精英家教网 > 高中数学 > 题目详情
15.方程2x-x3=0的一个近似解为1.5.(精确到0.1)

分析 利用二分法求方程的近似解的方法把区间一次次缩小,一直缩小到答案找出为止即可.

解答 解:由已知令f(x)=2x-x3
∵f(2)<0,f(1)>0,方程2x-x3=0的x∈(1,2)
由二分法知计算f(1.5)>0,方程2x-x3=0的x∈(1.5,2),
由二分法知计算f(1.75)<0,方程2x-x3=0的x∈(1.5,1.75),
由二分法知计算f(1.625)<0,方程2x-x3=0的x∈(1.5,1.625),
由二分法知计算f(1.5625)<0,方程2x-x3=0的x∈(1.5,1.5625),
由二分法知计算f(1.53125)<0,方程2x-x3=0的x∈(1.5,1.53125),
故符合要求的选项只有1.5.
故答案为:1.5.

点评 本题主要考查用二分法求区间根的问题,属于基础题型.在利用二分法求区间根的问题上,如果题中有根的精确度的限制,在解题时就一定要计算到满足要求才能结束.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知f(n)=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$,且g(n)=$\frac{1}{f(n)-1}$[f(1)+f(2)+…十f(n-1)].
(1)写出g(2),g(3),g(4)的值;
(2)归纳g(n)的值,并用数学归纳法加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设x>0,函数f(x)=x•3x-318的零点,x0∈(k,k+1)(k∈N*),则k=(  )
A.13B.14C.15D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,已知:梯形ABCD中,AD∥EF∥BC,AE=2BE,AD=2,BC=5,设$\overrightarrow{AD}$=$\overrightarrow{a}$,用$\overrightarrow{a}$表示$\overrightarrow{EF}$,$\overrightarrow{CB}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=loga(x+1),g(x)=ax-1(其中a>0且a≠1).
(1)求函数f(x)+g(x)的定义域;
(2)判断函数f(x)+g(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系.
(1)将直线l:$\left\{\begin{array}{l}{x=\sqrt{2}-\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数)化为极坐标方程;
(2)设P是(1)中直线l上的动点,定点A($\sqrt{2}$,$\frac{π}{4}$),B是曲线ρ=-2sinθ上的动点,求|PA|+|PB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.观察下面数列的特点,用适当的数填空,并写出每个数列的通项公式:
(1)10,20,30,40,50;
(2)1,$\sqrt{2}$,$\sqrt{3}$,2,$\sqrt{5}$,$\sqrt{6}$,$\sqrt{7}$;
(3)1,4,7,10,13,16,19;
(4)-$\frac{1}{2}$,$\frac{3}{4}$,-$\frac{5}{6}$,$\frac{7}{8}$,-$\frac{9}{10}$;
(5)$\frac{1}{2}$,2,$\frac{9}{2}$,8,$\frac{25}{2}$,18.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知a-a-1=1,求下列各式的值:
(1)a2+a-2
(2)$\frac{({a}^{3}+{a}^{-3})({a}^{2}+{a}^{-2}-3)}{{a}^{4}-{a}^{-4}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.对一切x∈R,|2x+1|+|x+2|≥-a2+4a恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案