精英家教网 > 高中数学 > 题目详情
若存在x使2•(x-a)>1成立.则a的取值范围是(  )
A、(-∞.+∞)
B、(-2,+∞)
C、(0.+∞)
D、(-1,+∞)
考点:特称命题
专题:简易逻辑
分析:根据不等式,求出不等式的解,即可得到结论.
解答: 解:由2•(x-a)>1得x>
1
2
+a

若存在x使2•(x-a)>1成立,
则a∈(-∞.+∞),
故选:A
点评:本题主要考查特称命题的应用,根据不等式的关系是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC=2,E、F分别是AB、PB的中点.
(1)求证:PA⊥CD;
(2)求三棱锥B-DEF的体积;
(3)二面角E-DF-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在平行四边形ABCD中,AC与BD交于点O,
AE
=
1
4
AC
AB
=a,
AD
=b,则
DE
=
 
.(结果用a,b表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体AC′的棱长为a.
(1)写出与AC平行的面对角线;
(2)写出与AC异面的面对角线;
(3)求直线AC与B′D′所成的角;
(4)求直线BA′和CC′所成的角;
(5)求直线BA′与B′C所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

ABCD是边长为3的正方形,ABEF是矩形,面ABCD垂直于面ABEF,G为EC的中点,求证AC∥面BFG.

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC的两顶点A(3,7),B(-2,5),若AC的中点在y轴上,BC的中点在x轴上
(1)求点C的坐标;
(2)求AC边上的中线BD的长及直线BD的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在棱长均相等的四面体O-ABCD中,D为AB的中点,E为CD的中点,设
OA
=
a
OB
=
b
OC
=
c
,则向量
OE
用向量
a
b
c
表示为(  )
A、
OE
=
1
3
a
+
1
3
b
+
1
3
c
B、
OE
=
1
4
a
+
1
4
b
+
1
4
c
C、
OE
=
1
4
a
+
1
4
b
-
1
2
c
D、
OE
=
1
4
a
+
1
4
b
+
1
2
c

查看答案和解析>>

科目:高中数学 来源: 题型:

求导:y=
x3-1
sinx

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=(x+1)|log2x|-1的零点个数为(  )
A、1B、2C、3D、4

查看答案和解析>>

同步练习册答案