【题目】已知函数, .
(1)求函数的单调区间;
(2)若关于的不等式恒成立,求整数的最小值.
【答案】(1)见解析(2)2
【解析】试题分析:(1)先确定函数的定义域,求导后得,根据正负进行讨论,可得函数的单调区间;(2)中可通过分离参数将问题转化成在区间内恒成立求解,令,结合函数零点存在定理可求得的最值。
试题解析:(1)函数的定义域为.
由题意得,
当时, ,则在区间内单调递增;
当时,由,得或(舍去),
当时, , 单调递增,
当时, , 单调递减.
所以当时, 的单调递增区间为,无单调递减区间;
当时, 的单调递增区间为,单调递减区间为.
(2)由,
得,
因为,所以原命题等价于在区间内恒成立.
令,
则,
令,则在区间内单调递增,
又,
所以存在唯一的,使得,
且当时, , 单调递增,
当时, , ,
所以当时, 有极大值,也为最大值,且 ,
所以,
又,所以,
所以,
因为,
故整数的最小值为2.
科目:高中数学 来源: 题型:
【题目】质检部门从企业生产的产品中抽取100件,测量这些产品的质量指标值,由测量结果得到如图的频率分布直方图,质量指标值落在区间,,内的频率之比为.
(Ⅰ)求这些产品质量指标值落在区间内的频率;
(Ⅱ)若将频率视为概率,从该企业生产的这种产品中随机抽取3件,记这3件产品中质量指标值位于区间内的产品件数为,求的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= ,若关于x的方程f(f(x))=0有且只有一个实数解,则实数a的取值范围是( )
A.(﹣∞,0)
B.(﹣∞,0]∪(0,1)
C.(﹣∞,0)∪(0,1]
D.(﹣∞,0)∪(0,1)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列不等式:①x≥ln(x+1)(x>﹣1)② >﹣ +2x﹣ (x>0)③ln >2(x+ )(x∈(0,1))其中成立的个数是( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一台机器按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器的运转的速度而变化,具有线性相关关系,下表为抽样试验的结果:
转速x(转/秒) | 8 | 10 | 12 | 14 | 16 |
每小时生产有缺点的零件数y(件) | 5 | 7 | 8 | 9 | 11 |
参考公式: , = = .
(1)如果y对x有线性相关关系,求回归方程;
(2)若实际生产中,允许每小时生产的产品中有缺点的零件最多有10个,那么机器的运转速度应控制在设么范围内?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com