精英家教网 > 高中数学 > 题目详情

【题目】三棱锥及其侧视图、俯视图如图所示.分别为线段的中点, 为线段上的点,且.

1)证明: 为线段的中点;

2)求二面角的余弦值.

【答案】1)证明详见解析;(2.

【解析】试题分析:根据侧视图和俯视图可知, 为正三角形,顶点D在底面内的射影为BD的中点O,所以两两互相垂直,故可以为坐标轴建立坐标系如图所示.1,为了证明点PBC的中点,只需利用向量证明即可.2)利用向量求出平面PMN和平面ABC的法向量,求出法向量的夹角即可得二面角的余弦值.

试题解答:取BD的中点O,建坐标系如图所示,则,设(1)证明:设,则.因为 ,所以点PBC的中点.

2)易平面PMN的法向量为.,设平面ABC的法向量为,则 ,所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆M的方程为x2(y2)21,直线l的方程为x2y0,点P在直线l上,过点P作圆M的切线PAPB,切点为AB.

()APB60°,试求点P的坐标;

()若P点的坐标为(2,1),过P作直线与圆M交于C,D两点,当CD=时,求直线CD的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】风景秀美的宝湖畔有四棵高大的银杏树,记作A,B,P,Q,湖岸部分地方围有铁丝网不能靠近.欲测量P,Q两棵树和A,P两棵树之间的距离,现可测得A,B两点间的距离为100 m,∠PAB=75°,∠QAB=45°,∠PBA=60°,∠QBA=90°,如图所示.则P,Q两棵树和A,P两棵树之间的距离各为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,四边形是矩形,平面 平面,点分别为中点.

1)求证: 平面

2,求平面DEF与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—4:极坐标与参数方程

在平面直角坐标系中,将曲线 (为参数) 上任意一点经过伸缩变换后得到曲线的图形.以坐标原点为极点,x轴的非负半轴为极轴,取相同的单位长度建立极坐标系,已知直线

Ⅰ)求曲线和直线的普通方程;

Ⅱ)点P为曲线上的任意一点,求点P到直线的距离的最大值及取得最大值时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将一铁块高温融化后制成一张厚度忽略不计、面积为100dm2的矩形薄铁皮(如图),并沿虚线l1l2裁剪成ABC三个矩形(BC全等),用来制成一个柱体.现有两种方案:

方案①:以为母线,将A作为圆柱的侧面展开图,并从BC中各裁剪出一个圆形作为圆柱的两个底面;

方案②:以为侧棱,将A作为正四棱柱的侧面展开图,并从BC中各裁剪出一个正方形(各边分别与垂直)作为正四棱柱的两个底面.

1BC都是正方形,且其内切圆恰为按方案①制成的圆柱的底面,求底面半径;

2的长为dm,则当为多少时,能使按方案②制成的正四棱柱的体积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面ABCD为梯形,,则在面PBC内  

A. 一定存在与CD平行的直线

B. 一定存在与AD平行的直线

C. 一定存在与AD垂直的直线

D. 不存在与CD垂直的直线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

1)当时,求曲线在点处的切线方程;

2)讨论函数的单调区间;

3求证若函数处取得极值,则对恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一条动直线3(m+1)x+(m-1)y-6m-2=0

1)求证:直线恒过定点,并求出定点P的坐标;

2)若直线与xy轴的正半轴分别交于AB两点,O为坐标原点,是否存在直线满足下列条件:①AOB的周长为12;②△AOB的面积为6,若存在,求出方程;若不存在,请说明理由.

3)若直线与xy轴的正半轴分别交于AB两点,当取最小值时,求直线的方程.

查看答案和解析>>

同步练习册答案