【题目】已知函数f(x)=2 sin cos ﹣2sin2 (ω>0)的最小正周期为3π.
(I)求函数f(x)的单调递增区间;
(Ⅱ)在△ABC中,a,b,c分别为角A,B,C所对的边,a<b<c, a=2csinA,并且f( A+ )= ,求cosB的值.
【答案】解:(I)由三角函数公式化简可得
f(x)=2 sin cos ﹣2sin2
= sinωx﹣1+cosωx
=2sin(ωx+ )﹣1,
∵函数f(x)的最小正周期为T=3π,
∴ω= = = ,
∴f(x)=2sin( x+ )﹣1,
由2kπ﹣ ≤ x+ ≤2kπ+ 可得3kπ﹣π≤x≤3kπ+ ,
∴函数f(x)的单调递增区间为[3kπ﹣π,3kπ+ ],k∈Z;
(Ⅱ)∵f( A+ )= ,∴2sin(A+ + )﹣1= ,
∴2sin(A+ )﹣1= ,∴2cosA﹣1= ,
解得cosA= ,∴sinA= = ,
再由 a=2csinA和正弦定理可得 sinA=2sinCsinA,
约掉sinA可得sinC= ,∴C= 或C= ,
又∵a<b<c,∴C为最大角,C= 矛盾,
故C= ,cosC=﹣ ,
∴cosB=﹣cos(A+C)=sinAsinC﹣cosAcosC
= ﹣ =
【解析】(I)由三角函数公式化简可得f(x)=2sin(ωx+ )﹣1,由周期公式可得ω,解2kπ﹣ ≤ x+ ≤2kπ+ 可得;(Ⅱ)由题意和已知数据可得cosA= ,进而可得sinA= ,再由 a=2csinA和正弦定理可得C= ,整体代入cosB=﹣cos(A+C)=sinAsinC﹣cosAcosC,计算可得.
【考点精析】利用正弦定理的定义对题目进行判断即可得到答案,需要熟知正弦定理:.
科目:高中数学 来源: 题型:
【题目】某化肥厂生产甲、乙两种混合肥料,需要A,B,C三种主要原料.生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:
现有A种原料200吨,B种原料360吨,C种原料300吨.在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元.分别用x,y表示计划生产甲、乙两种肥料的车皮数.
(1)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;
(2)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线上一点到其焦点的距离为4,椭圆 的离心率,且过抛物线的焦点.
(1)求抛物线和椭圆的标准方程;
(2)过点的直线交抛物线于两不同点,交轴于点,已知, ,求证: 为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2016年上半年,股票投资人袁先生同时投资了甲、乙两只股票,其中甲股票赚钱的概率为 ,赔钱的概率是 ;乙股票赚钱的概率为 ,赔钱的概率为 .对于甲股票,若赚钱则会赚取5万元,若赔钱则损失4万元;对于乙股票,若赚钱则会赚取6万元,若赔钱则损失5万元.
(Ⅰ)求袁先生2016年上半年同时投资甲、乙两只股票赚钱的概率;
(Ⅱ)试求袁先生2016年上半年同事投资甲、乙两只股票的总收益的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知圆的方程为:,直线的方程为.
(1)求证:直线恒过定点;
(2)当直线被圆截得的弦长最短时,求直线的方程;
(3)在(2)的前提下,若为直线上的动点,且圆上存在两个不同的点到点的距离为,求点的横坐标的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,已知3acosA=ccosB+bcosC.
(1)求cosA,sinA的值;
(2)若cosB+cosC= ,求cosC+ sinC的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=6cos2 + sinωx﹣3(ω>2)在一个周期内的图象如图所示,A为图象的最高点,B,C为图象与x轴的交点,且ABC为正三角形.
(1)求ω的值;
(2)求函数f(x)的值域.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com