精英家教网 > 高中数学 > 题目详情
11.已知P是直线kx+4y-10=0(k>0)上的动点,是圆C:x2+y2-2x+4y+4=0的两条切线,A,B是切点,C是圆心,若四边形PACB面积的最小值为$2\sqrt{2}$,则k的值为(  )
A.3B.2C.$\frac{1}{3}$D.$\frac{15}{2}$

分析 S四边形PACB=S△PAC+S△PBC,当|PC|取最小值时,|PA|=|PB|取最小值,即S△PAC=S△PBC取最小值,此时,CP⊥l由此利用四边形PACB面积的最小值,即可得出结论..

解答 解:圆的标准方程为(x-1)2+(y+2)2=1,
则圆心为C(1,-2),半径为1,
则直线与圆相离,如图,S四边形PACB=S△PAC+S△PBC
而S△PAC=$\frac{1}{2}$|PA|•|CA|=$\frac{1}{2}$|PA|,
S△PBC=$\frac{1}{2}$|PB|•|CB|=|PB|,
又|PA|=|PB|=$\sqrt{|PC{|}^{2}-1}$,
∴当|PC|取最小值时,|PA|=|PB|取最小值,
即S△PAC=S△PBC取最小值,此时,CP⊥l,
四边形PACB面积的最小值为$2\sqrt{2}$,S△PAC=S△PBC=$\sqrt{2}$,
∴|PA|=2$\sqrt{2}$,∴|CP|=3,∴$\frac{|k-8-10|}{\sqrt{{k}^{2}+16}}$=3,
∵k>0,∴k=3.
故选A.

点评 本题考查直线和圆的位置关系,解题时要认真审题,在解答过程中要合理地运用数形结合思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知三点P1(1,1,0),P2(0,1,1)和P3(1,0,1),O是坐标原点,则|$\overrightarrow{O{P}_{1}}$+$\overrightarrow{O{P}_{2}}$+$\overrightarrow{O{P}_{3}}$|=(  )
A.2B.4C.$2\sqrt{3}$D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{25}$=1的焦点为F1、F2,AB是椭圆过焦点F1的弦,则△ABF2的周长是20.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知三个不同的平面α,β,γ,三条不重合的直线m,n,l,有下列四个命题:
①若m⊥l,n⊥l,则m∥n;
②若α⊥γ,β⊥γ,则α∥β;
③若m⊥α,m∥n,n?β,则α⊥β;
④若m∥α,α∩β=n,则m∥n
其中真命题的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知f(x)=|x+1|+|x-2|
(Ⅰ)已知关于x的不等式f(x)<2a-1有实数解,求实数a的取值范围;
(Ⅱ)解不等式f(x)≥x2-2x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=xlnx+a(a∈R)
(Ⅰ) 若f(x)≥0恒成立,求实数a的取值范围;
(Ⅱ) 若0<x1<x2,求证:对于任意x∈(x1,x2),不等式$\frac{{f(x)-f({x_1})}}{{x-{x_1}}}<\frac{{f(x)-f({x_2})}}{{x-{x_2}}}$成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数$f(x)=2\sqrt{3}sinxcosx+2{cos^2}x-1$,则下列说法正确的是(  )
A.$(\frac{7π}{12},0)$是函数y=f(x)的对称中心B.$x=\frac{7π}{12}$是函数y=f(x)的对称轴
C.$(-\frac{π}{12},0)$是函数y=f(x)的对称中心D.$x=-\frac{π}{12}$是函数y=f(x)的对称轴

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数$f(x)={log_{\frac{1}{2}}}x$的递减区间是(  )
A.$(0,\frac{1}{2}]$B.(0,+∞)C.(0,1]D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,已知F(1,0)为椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点,离心率$\frac{\sqrt{2}}{2}$.
(1)求椭圆的方程;
(2)P为椭圆上一点,椭圆在P点处的切线与直线x=c和右准线x=$\frac{{a}^{2}}{c}$分别交于点M,N.
①若P(0,1),求$\frac{MF}{NF}$的值;
②探究当P在椭圆上移动时,$\frac{MF}{NF}$的值是否为定值?若是,求出此定值,否则,说明理由.

查看答案和解析>>

同步练习册答案