精英家教网 > 高中数学 > 题目详情
函数f(x)=ex+x2+x+1与g(x)的图象关于直线2x-y-3=0对称,P,Q分别是函数f(x),g(x)图象上的动点,则|PQ|的最小值为(  )
A、
5
5
B、
5
C、
2
5
5
D、2
5
考点:利用导数研究曲线上某点切线方程
专题:导数的综合应用
分析:根据函数f(x)和g(x)关于直线2x-y-3=0,则利用导数求出函数f(x)到直线的距离的最小值即可.
解答: 解:∵f(x)=ex+x2+x+1,
∴f′(x)=ex+2x+1,
∵函数f(x)的图象与g(x)关于直线2x-y-3=0对称,
∴函数f(x)到直线的距离的最小值的2倍,即可|PQ|的最小值.
直线2x-y-3=0的斜率k=2,
由f′(x)=ex+2x+1=2,
即ex+2x-1=0,
解得x=0,
此时对于的切点坐标为(0,2),
∴过函数f(x)图象上点(0,2)的切线平行于直线y=2x-3,
两条直线间距离d就是函数f(x)图象到直线2x-y-3=0的最小距离,
此时d=
|-2-3|
22+1
=
5
5
=
5

由函数图象的对称性可知,|PQ|的最小值为2d=2
5

故选:D.
点评:本题主要考查导数的应用以及两点间距离的求解,根据函数的对称性求出函数f(x)到直线的距离是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某校为调查学生喜欢“应用统计”课程是否与性别有关,随机抽取了选修课程的55名学生,得到数据如下表:
喜欢统计课程不喜欢统计课程
男生205
女生1020
(1)判断是否有99.5%的把握认为喜欢“应用统计”课程与性别有关?
(2)用分层抽样的方法从喜欢统计课程的学生中抽取6名学生作进一步调查,将这6名学生作为一个样本,从中任选2人,求恰有1个男生和1个女生的概率.
P(K2≥k)0.100.050.250.0100.0050.001
k2.7063.8415.0246.6357.87910.828
临界值参考:
(参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知变量x与y负相关,且由观测数据算得样本平均数
.
x
=4,
.
y
=4.5,则由该观测数据算得的线性回归方程可能是(  )
A、
y
=0.4x+2.3
B、
y
=2x-2.4
C、
y
=-0.3x-3.3
D、
y
=-2x+12.5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的首项a1=1,a2=3,前n项和为Sn,且
Sn+1-Sn
Sn-Sn-1
=
2an+1
an
,(n≥2,n∈N),设b1=1,bn+1=log2(an+1)+bn
(Ⅰ)判断数量{an+1}是否为等比数列,并证明你的结论;
(Ⅱ)设Cn=
4
bn+1-1
n+1
anan+1
,证明
n
k=1
C
k
<1

(Ⅲ)对于(Ⅰ)中数列{an},若数列{ln}满足ln=log2(an+1)(n∈N),在每两个lk与lk+1之间都插入2k-1(k=1,2,3,…,k∈N)个2,使得数列{ln}变成了一个新的数列{tp},(p∈N)试问:是否存在正整数m,使得数列{tp}的前m项的和Tm=2011?如果存在,求出m的值;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

《孙子算经》卷下第二十六题:今有物,不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?
 
.(只需写出一个答案即可)

查看答案和解析>>

科目:高中数学 来源: 题型:

下列判断:
①若
a2
+
b2
=0,则
a
=
b
=0;
②已知
a
b
c
是三个非0向量,若
a
+
b
=0,则|
a
c
|=|
b
c
|;
a
b
共线?
a
b
=|
a
||
b
|;
④|
a
||
b
|<2
a
b

a
a
a
=|
a
|3
a2
+
b2
≥2
a
b

⑦非零向量
a
b
满足:
a
b
>0,则
a
b
夹角为锐角;
⑧若
a
b
的夹角为θ,则|
b
|cosθ表示向量
b
在向量
a
方向上的投影长,
其中正确的是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+
1
x2
+a(x+
1
x
)+b (x∈R,且x≠0),若实数a,b使得函数y=f(x)在定义域上有零点,则a2+b2的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆
x2
4
+
y2
3
=1
的面积为
 

查看答案和解析>>

同步练习册答案