精英家教网 > 高中数学 > 题目详情
15.已知递增的等差数列{an}的首项a1=1,且a1、a2、a4成等比数列.
(1)求数列{an}的通项公式an
(2)设{cn}对任意n∈NΦ,都有$\frac{{c}_{1}}{2}$+$\frac{{c}_{2}}{{2}^{2}}$+…+$\frac{{c}_{n}}{{2}^{n}}$=an+1成立,求c1+c2+…+c2015的值;
(3)若bn=$\frac{{a}_{n+1}}{{a}_{n}}$(n∈NΦ),求证:数列{bn}中的任意一项总可以表示成其他两项之积.

分析 (1)通过a1、a2、a4成等比数列,解方程(1+d)2=1+3d,计算即得结论;
(2)通过an+1=n+1可知c1=4,当n≥2时利用$\frac{{c}_{n}}{{2}^{n}}$=($\frac{{c}_{1}}{2}$+$\frac{{c}_{2}}{{2}^{2}}$+…+$\frac{{c}_{n}}{{2}^{n}}$)-($\frac{{c}_{1}}{2}$+$\frac{{c}_{2}}{{2}^{2}}$+…+$\frac{{c}_{n-1}}{{2}^{n-1}}$)计算可知cn=2n,进而利用等比数列的求和公式计算即得结论;
(3)假设存在k、t≠n(k、t∈N*)使得bn=bk•bt,即只需$\frac{n+1}{n}$=$\frac{k+1}{k}$•$\frac{t+1}{t}$,化简可知t=$\frac{n(k+1)}{k-n}$,取值即可.

解答 (1)解:∵数列{an}是递增的等差数列,设公差为d(d>0),
由a1、a2、a4成等比数列,可知:${{a}_{2}}^{2}={a}_{1}•{a}_{4}$,
∴(1+d)2=1+3d,
解得:d=1或d=0(舍),
∴an=1+(n-1)=n;
(2)解:∵an+1=n+1,
∴$\frac{{c}_{1}}{2}$+$\frac{{c}_{2}}{{2}^{2}}$+…+$\frac{{c}_{n}}{{2}^{n}}$=n+1对任意n∈N*都成立,
当n=1时,$\frac{{c}_{1}}{2}$=2,即c1=4;
当n≥2时,$\frac{{c}_{n}}{{2}^{n}}$=($\frac{{c}_{1}}{2}$+$\frac{{c}_{2}}{{2}^{2}}$+…+$\frac{{c}_{n}}{{2}^{n}}$)-($\frac{{c}_{1}}{2}$+$\frac{{c}_{2}}{{2}^{2}}$+…+$\frac{{c}_{n-1}}{{2}^{n-1}}$)=1,
∴cn=2n
∴cn=$\left\{\begin{array}{l}{4,}&{n=1}\\{{2}^{n},}&{n≥2}\end{array}\right.$.
∴c1+c2+…+c2015=4+22+23+…+22015
=4+$\frac{4(1-{2}^{2014})}{1-2}$
=22016
(3)证明:对于给定的n∈N*,假设存在k、t≠n(k、t∈N*),使得bn=bk•bt
∵bn=$\frac{n+1}{n}$,
∴只需$\frac{n+1}{n}$=$\frac{k+1}{k}$•$\frac{t+1}{t}$,
即1+$\frac{1}{n}$=(1+$\frac{1}{k}$)(1+$\frac{1}{t}$),
即$\frac{1}{n}$=$\frac{1}{k}$+$\frac{1}{t}$+$\frac{1}{k}$•$\frac{1}{t}$,
即kt=nt+nk+n,t=$\frac{n(k+1)}{k-n}$,
取k=n+1,则t=n(n+2),
∴对数列{bn}中的任意一项bn=$\frac{n+1}{n}$,都存在bn+1=$\frac{n+2}{n+1}$和${b}_{{n}^{2}+2n}$=$\frac{{n}^{2}+2n+1}{{n}^{2}+2n}$使得bn=bn+1•${b}_{{n}^{2}+2n}$.

点评 本题考查数列的通项及前n项和,考查运算求解能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知Sn为数列{an}的前n项和,a1=c(c为常数且c≠0),且Sn=tan-c,n∈N*
(1)求实数t的值及{an}的通项公式;
(2)设bn=$\frac{n}{{a}_{n}}$,cn=$\frac{c•{2}^{n}}{{S}_{n}•{S}_{n+1}}$,记数列{bn},{cn}的前n项和分别为En、Fn,记Tn=En+Fn,是否存在最小整数M,对任意的n∈N*,有Tn≤M恒成立?若存在,求出M的值;若不存在,请说明理由.(记[x]表示不超过x的最大整数,如:[3]=3,[3,2]=3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(x)=log7(x2-2x-3)的单调递减区间为(-∞,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.对于函数f(x)和g(x),设m∈{x∈R|f(x)=0},n∈{x∈R|g(x)=0},若存在m、n,使得|m-n|≤1,则称f(x)与g(x)互为“零点关联函数”.若函数f(x)=log2(x+1)-e1-x与g(x)=x2-ax-a+3互为“零点关联函数”,则实数a的取值范围为(  )
A.[2,$\frac{7}{3}$]B.[$\frac{7}{3}$,3]C.[2,3]D.[2,4]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知AB是⊙O的弦,P是AB上一点,AB=6$\sqrt{2},PA=4\sqrt{2}$,OP=3,求⊙O的半径R.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=lnx-x2的极值情况为(  )
A.无极值B.有极小值,无极大值
C.有极大值,无极小值D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.计算下列各式:
(1)3(2$\overrightarrow{a}$-$\overrightarrow{b}$)-2(4$\overrightarrow{a}$-3$\overrightarrow{b}$);
(2)$\frac{1}{3}$(4$\overrightarrow{a}$+3$\overrightarrow{b}$)-$\frac{1}{2}$(3$\overrightarrow{a}$-$\overrightarrow{b}$)-$\frac{3}{2}$$\overrightarrow{b}$;
(3)2(3$\overrightarrow{a}$-4$\overrightarrow{b}$+$\overrightarrow{c}$)-3(2$\overrightarrow{a}$+$\overrightarrow{b}$-3$\overrightarrow{c}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.甲、乙两人在一次射击测试中各射靶10次,如图分别是这两人命中环数的直方图,若他们的成绩平均数分别为y1和y2,成绩的标准差分别为s1和s2,则(  )
A.y1=y2,s1>s2B.y1=y2,s1<s2C.y1>y2,s1=s2D.y1<y2,s1=s2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.参数方程$\left\{\begin{array}{l}x=2+{sin^2}θ\\ y={sin^2}θ\end{array}\right.(θ为参数)$所表示的图形是(  )
A.直线B.射线C.线段D.

查看答案和解析>>

同步练习册答案