分析 (1)由正弦定理,可得tanA=tanB=tanC,即可得出结论;
(2)由sinA=2sinBcosC,得出tanB=tanC,即可得出结论.
解答 解:(1)由正弦定理,可得tanA=tanB=tanC,
∵A,B,C∈(0,π),
∴A=B=C,
∴△ABC是正三角形;
(2)∵sinA=2sinBcosC,
∴sin(B+C)=2sinBcosC,
∴sinBcosC+cosBsinC=2sinBcosC,
∴cosBsinC=sinBcosC,
∴tanB=tanC,
∵B,C∈(0,π),
∴B=C,
∴△ABC是等腰三角形.
点评 本题考查三角形形状的判断,考查正弦定理的运用,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源:2015-2016学年江西省南昌市高一下学期期末考试数学试卷(解析版) 题型:填空题
在正方形内有一扇形(见图中阴影部分),点P随意等可能落在正方形内,则这点落在扇形外,且在正方形内的概率为________.
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com