精英家教网 > 高中数学 > 题目详情
3.在△ABC中,根据条件判断三角形形状
(1)$\frac{a}{cosA}$=$\frac{b}{cosB}$=$\frac{c}{cosC}$;
(2)sinA=2sinBcosC.

分析 (1)由正弦定理,可得tanA=tanB=tanC,即可得出结论;
(2)由sinA=2sinBcosC,得出tanB=tanC,即可得出结论.

解答 解:(1)由正弦定理,可得tanA=tanB=tanC,
∵A,B,C∈(0,π),
∴A=B=C,
∴△ABC是正三角形;
(2)∵sinA=2sinBcosC,
∴sin(B+C)=2sinBcosC,
∴sinBcosC+cosBsinC=2sinBcosC,
∴cosBsinC=sinBcosC,
∴tanB=tanC,
∵B,C∈(0,π),
∴B=C,
∴△ABC是等腰三角形.

点评 本题考查三角形形状的判断,考查正弦定理的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.现有1名女教师和2名男教师参加说题比赛,共有2道备选题目,若每位选手从中有放回地随机选出一道题进行说题,其中恰有一男一女抽到同一道题的概率为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知角α和β满足$0<α<2β≤\frac{π}{2}$,且2cos(α+β)cosβ=-1+2sin(α+β)sinβ,则角α和角β满足的关系式是α+2β=$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.有2名老师,3名男生,3名女生站成一排照相留念,在下列情况下,各有多少种不同站法?(最终结果用数字表示)
(1)3名男生必须站在一起;
(2)2名老师不能相邻;
(3)若3名女生身高互不相等,从左到右女生必须按由高到矮顺序站.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知等差数列{an}的前n项和为Sn,等比数列{bn}的各项均为正数,公比为q,且满足:a1=3,b1=1,b2+S2=12,S2=b2q.
(1)求an与bn
(2)设cn=3bn-2λ•$\frac{{a}_{n}}{3}$(λ∈R),若数列{cn}是递增数列,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源:2015-2016学年江西省南昌市高一下学期期末考试数学试卷(解析版) 题型:填空题

在正方形内有一扇形(见图中阴影部分),点P随意等可能落在正方形内,则这点落在扇形外,且在正方形内的概率为________.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知数列{an}中,a1=-2,a2=3且$\frac{{a}_{n+2}-3{a}_{n+1}}{{a}_{n+1}-3{a}_{n}}$=3,则数列{an}的前n项和Sn=$\frac{13+(6n-13)•{3}^{n}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若母线长是$2\sqrt{2}$cm的圆锥的轴截面的面积是4cm2,则此圆锥的高是2cm.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.阅读下列材料,回答后面问题:
在2014年12月30日CCTV13播出的“新闻直播间”节目中,主持人说:“…加入此次亚航失联航班QZ8501被证实失事的话,2014年航空事故死亡人数将达到1320人.尽管如此,航空安全专家还是提醒:飞机仍是相对安全的交通工具.①世界卫生组织去年公布的数据显示,每年大约有124万人死于车祸,而即使在航空事故死亡人数最多的一年,也就是1972年,其死亡数字也仅为3346人;②截至2014年9月,每百万架次中有2.1次(指飞机失事),乘坐汽车的百万人中其死亡人数在100人左右.”
对上述航空专家给出的①、②两段表述(划线部分),你认为不能够支持“飞机仍是相对安全的交通工具”的所有表述序号为①,你的理由是数据①虽是同类数据,但反映不出乘车出行和乘飞机出行的总人数的关系;
数据②两个数据不是同一类数据,这与每架次飞机的乘机人数有关;但是可以做如下大致估算,考虑平均每架次飞机的乘机人数为x,这样每百万人乘机死亡人数2.1人,要远远少于乘车每百万人中死亡人数.

查看答案和解析>>

同步练习册答案