分析 求出f(2017)=170,由${3}^{n}(1-|\frac{x}{{3}^{n}}-2|)$=170,可得1-$\frac{170}{{3}^{n}}$>0,n最小取5,可得|$\frac{x}{{3}^{5}}$-2|=1-$\frac{170}{{3}^{5}}$,即可得出结论.
解答 解:∵定义在正实数集上的函数f(x)满足:f(3x)=3f(x),
∴$f(x)={3}^{n}f(\frac{x}{{3}^{n}})$,
∴f(2017)=${3}^{6}f(\frac{2017}{{3}^{6}})$,
∵1<$\frac{2017}{{3}^{6}}$<3,
∴f($\frac{2017}{{3}^{6}}$)=1-|$\frac{2017}{{3}^{6}}$-2|=$\frac{170}{{3}^{6}}$,
∴f(2017)=170,
由${3}^{n}(1-|\frac{x}{{3}^{n}}-2|)$=170,可得1-$\frac{170}{{3}^{n}}$>0,n最小取5,可得|$\frac{x}{{3}^{5}}$-2|=1-$\frac{170}{{3}^{5}}$
∴x=413,
故答案为413.
点评 本题考查抽象函数,考查函数性质的运用,求出n最小取5,可得|$\frac{x}{{3}^{5}}$-2|=1-$\frac{170}{{3}^{5}}$是关键,难度大.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-∞,-$\frac{1}{3}$) | B. | (-$\frac{1}{3}$,$\frac{1}{2}$)∪($\frac{1}{2}$,+∞) | C. | ($\frac{1}{2}$,+∞) | D. | ($\frac{1}{3}$,$\frac{1}{2}$)∪($\frac{1}{2}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{{\sqrt{3}}}{2}{a^2}$ | B. | $\frac{{\sqrt{3}}}{4}{a^2}$ | C. | $\frac{{\sqrt{6}}}{2}{a^2}$ | D. | $\sqrt{6}{a^2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{3}$ | B. | 2 | C. | 2$\sqrt{2}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com