精英家教网 > 高中数学 > 题目详情
设函数f(x)=4lnx-(x-1)2
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)若关于x的方程f(x)+x2-4x-a=0在区间[1,e]内恰有两个相异的实根,求实数a的取值范围.
(I)∵函数f(x)=4lnx-(x-1)2
∴f′(x)=
4
x
-2x+2=
-2x2+2x+4
x
=
-2(x-2)(x+1)
x
(x>0).
令f′(x)>0,解得x∈(0,2)
故函数f(x)的单调递增区间为(0,2)
(II)关于x的方程f(x)+x2-4x-a=0
可化为4lnx-(x-1)2+x2-4x-a=4lnx-2x-1-a=0
令g(x)=4lnx-2x-1-a
则g′(x)=
4
x
-2
令g′(x)=0,则x=2,
则当0<x<2时,g′(x)>0,g(x)为增函数
当x>2时,g′(x)<0,g(x)为减函数
故当方程f(x)+x2-4x-a=0在区间[1,e]内恰有两个相异的实根时
g(1)=-3-a≤0
g(2)=4ln2-5-a>0
g(e)=3-2e-a≤0

解得3-2e≤a<4ln2-5
故实数a的取值范围为[3-2e,4ln2-5)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=x2-ax-6和函数g(x)=
k-2
x
(k≠2)
,已知过点(3,-28)的两直线与曲线f(x)分别相切于两点A(m1,f(m1)),B(m2,f(m2)),且2
5
是m1+3与m2+3的等比中项.
(Ⅰ) 求a的值;
(Ⅱ) 若函数h(x)=f(x)-g(x)-4lnx在(
1
2
,4)
是增函数,求k的取值范围;
(Ⅲ) 设t=
2k+1
i=1
1
|g(x-i)|
,k>2,k∈N*
,求证:ln
1+t
1+k
<t-k

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=4lnx-ax+
a+3
x
(a≥0)
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)当a≥1时,设g(x)=2ex-4x+2a,若存在x1,x2∈[
1
2
,2],使f(x1)>g(x2),求实数a的取值范围.(e为自然对数的底数,e=2.71828…)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=4lnx-(x-1)2
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)若关于x的方程f(x)+x2-4x-a=0在区间[1,e]内恰有两个相异的实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省青岛二中高二(下)期中数学试卷(理科)(解析版) 题型:解答题

设函数f(x)=4lnx-(x-1)2
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)若关于x的方程f(x)+x2-4x-a=0在区间[1,e]内恰有两个相异的实根,求实数a的取值范围.

查看答案和解析>>

同步练习册答案