【题目】已知.
(1)若是函数的极值点,求的值;
(2)当时,若,都有成立,求实数
的取值范围.
【答案】(1);(2) .
【解析】试题分析:(1)利用是函数的极值点,求出,即可求出的值;(2)对进行配方,讨论其最值问题,根据题意,总有成立,只要要求,即可,从而求出的范围.
试题解析:(1),又因为是极值点,则,则,经检验,当时, 是极值点,故名满足题意.
(2)当a=2时,f(x)=2x--5ln x,
f ′(x)=,
∴当x∈(0, )时,f ′ (x)>0,f(x)单调递增;
当x∈(,1)时,f ′(x)<0,f(x)单调递减.
∴在(0,1)上,f(x)max=f()=-3+5ln2.
又“x1∈(0,1),x2∈[1,2],都有f(x1)≥g(/span>x2)成立”等价于“f(x)在(0,1)上的最大值不小于g(x)在[1,2]上的最大值”,而g(x)在[1,2]上的最大值为max{g(1),g(2)},
∴ ,即,
解得m≥8-5ln 2.
∴实数m的取值范围是[8-5ln 2,+∞).
科目:高中数学 来源: 题型:
【题目】某厂每日生产一种大型产品1件,每件产品的投入成本为2000元.产品质量为一等品的概率为,二等品的概率为,每件一等品的出厂价为10000元,每件二等品的出厂价为8000元.若产品质量不能达到一等品或二等品,除成本不能收回外,没生产一件产品还会带来1000元的损失.
(1)求在连续生产3天中,恰有一天生产的两件产品都为一等品的的概率;
(2)已知该厂某日生产的2件产品中有一件为一等品,求另一件也为一等品的概率;
(3)求该厂每日生产该种产品所获得的利润(元)的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,F1 , F2是双曲线C: (a>0,b>0)的左、右焦点,过F1的直线l与C的左、右两支分别交于A,B两点.若△ABF2为等边三角形,则双曲线的离心率为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知条件p:x2﹣3x﹣4≤0;条件q:x2﹣6x+9﹣m2≤0,若p是q的充分不必要条件,则m的取值范围是( )
A.[﹣1,1]
B.[﹣4,4]
C.(﹣∞,﹣1]∪[1,+∞)
D.(﹣∞,﹣4]∪[4,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知p:x∈R,cos2x﹣sinx+2≤m;q:函数 在[1,+∞)上单调递减.
(I)若p∧q为真命题,求m的取值范围;
(II)若p∨q为真命题,p∧q为假命题,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和Sn满足Sn= n2+ n(n∈N*),数列{bn}是首项为4的正项等比数列,且2b2 , b3﹣3,b2+2成等差数列. (Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)令cn=anbn(n∈N*),求数列{cn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在△ABC中,∠ABC=90°,AB= ,BC=1,P为△ABC内一点,∠BPC=90°.
(1)若PB= ,求PA;
(2)若∠APB=150°,求tan∠PBA.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业开发一种新产品,现准备投入适当的广告费,对产品进行促销,在一年内,预计年销量Q(万件)与广告费x(万件)之间的函数关系为 ,已知生产此产品的年固定投入为3万元,每年产1万件此产品仍需要投入32万元,若年销售额为(32Q+3)150%+x50%,而当年产销量相等.
(1)试将年利润P(万件)表示为年广告费x(万元)的函数;
(2)当年广告费投入多少万元时,企业年利润最大?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com