精英家教网 > 高中数学 > 题目详情
6.为了了解参加运动会的2 000名运动员的年龄情况,从中抽取20名运动员的年龄进行统计分析.就这个问题,下列说法中正确的有④⑥.
①2 000名运动员是总体;
②每个运动员是个体;
③所抽取的20名运动员是一个样本;
④样本容量为20;
⑤这个抽样方法可采用随机数表法抽样;
⑥每个运动员被抽到的机会相等.

分析 ①②③④⑤⑥利用统计中总体、个体、样本容量的概念及抽样方法、特点等对①②③④⑤⑥六个选项逐一分析即可得到答案.

解答 解:①2000名运动员的年龄是总体,故①错误;
②每个运动员的年龄是个体,故②错误;
③所抽取的20名运动员的年龄是一个样本,故③错误;
④从2000名运动员的年龄中抽取20名运动员的年龄进行统计分析,样本容量为20,正确;
⑤随机数法常常用于总体个数较少时,它的主要特征是从总体中逐个抽取,当总体中的个体数较多时,编号复杂,将总体“搅拌均匀”也比较困难,用随机法产生的样本代表性差的可能性很大,故⑤错误;
⑥每个运动员被抽到的机会相等,正确.
故答案为:④⑥.

点评 本题考查概率统计中的总体、个体、样本容量的概念及抽样方法的判断,准确掌握概念是关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.某地区有800名学员参加交通法规考试,考试成绩的频率分布直方图如图所示,其中成绩分组区间是:[75,80),[80,85),[85,90),[90,95),[95,100],规定90分及以上为合格:
(1)求图中a的值;
(2)根据频率分布直方图估计该地区学员交通法规考试合格的概率;
(3)若三个人参加交通法规考试,估计这三个人至少有两人合格的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若f(x)=sinα-cosx,则f′(x)等于(  )
A.2sinα+cosxB.cosα+sinxC.cosxD.sinx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知两正数x,y 满足x+y=1,则z=$(x+\frac{1}{x})(y+\frac{1}{y})$的最小值为(  )
A.$\frac{33}{4}$B.$\frac{25}{4}$C.$\frac{1}{4}$D.$\frac{{\sqrt{17}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.晚会上有5个不同的歌唱节目和3个不同的舞蹈节目,分别按以下要求各可以排出多少种不同的节目单:
(1)3个舞蹈节目排在一起;
(2)3个舞蹈节目彼此分开;
(3)3个舞蹈节目先后顺序一定;
(4)前4个节目中既要有歌唱节目,又要有舞蹈节目.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.a、b均为实数,则a<b<0是a2>b2的(  )
A.必要不充分条件B.充分不必要条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若圆C1:x2+y2+2x+2y+1=0与圆C2:x2+y2-4x-6y+m=0外切,则m=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设A(n)表示正整数n的个位数,an=A(n2)-A(n),A为数列{an}的前202项和,函数f(x)=ex-e+1,若函数g(x)满足f[g(x)-$\frac{Ax-1}{{A}^{x}}$]=1,且bn=g(n)(n∈N*),则数列{bn}的前n项和为n+3-(2n+3)•($\frac{1}{2}$)n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知椭圆:$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{{b}^{2}}$=1(0<b<3),左右焦点分别为F1,F2,过F1的直线l交椭圆于A、B两点,若|BF2|+|AF2|的最大值为10,则b的值是(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.$\sqrt{6}$

查看答案和解析>>

同步练习册答案