精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)loga(1x)g(x)loga(1x)(a>0a1).

(1)a2函数f(x)的定义域为[363]f(x)的最值;

(2)求使f(x)g(x)>0x的取值范围.

【答案】(1)最小值为2,最大值为6;(2)a>1时,解集为{x|0<x<1}0<a<1时,解集为{x|1<x<0}.

【解析】试题分析:(1)根据函数单调性求函数最值(2)根据底与1的大小,分类讨论函数单调性,化简不等式,解出x的取值范围.

试题解析:

(1)当a=2时,f(x)=log2(1+x),

在[3,63]上为增函数,因此当x=3时,f(x)最小值为2.

x=63时f(x)最大值为6.

(2)f(x)-g(x)>0即f(x)>g(x)

a>1时,loga(1+x)>loga(1-x)

满足∴0<x<1

当0<a<1时,loga(1+x)>loga(1-x)

满足∴-1<x<0

综上a>1时,解集为{x|0<x<1}

0a<1时解集为{x|1<x0}

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列5个命题中正确命题的个数是( )

①对于命题p:x∈R,使得x2+x+1<0,则綈p:x∈R,均有x2+x+1>0;

②m=3是直线(m+3)x+my-2=0与直线mx-6y+5=0互相垂直的充要条件;

③已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则线性回归方程为=1.23x+0.08;

④若实数x,y∈[-1,1],则满足x2+y2≥1的概率为

⑤曲线y=x2与y=x所围成图形的面积是S= (x-x2)dx.

A.2 B.3 C.4 D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy上取两个定点 再取两个动点,且

(Ⅰ)求直线交点M的轨迹C的方程;

(Ⅱ)过的直线与轨迹C交于P,Q,过P轴且与轨迹C交于另一点NF为轨迹C的右焦点,若,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】空气质量指数(,简称)是定量描述空气质量状况的无量纲指数,参与空气质量评价的主要污染物为等六项.空气质量按照大小分为六级:一级为优;二级为良好;三级为轻度污染;四级为中度污染;五级为重度污染;六级为严重污染.

某人根据环境监测总站公布的数据记录了某地某月连续10天的茎叶图如图所示:

1)利用访样本估计该地本月空气质量优良()的天数;(按这个月总共30天计算);

(2)若从样本中的空气质量不佳()的这些天中,随机地抽取三天深入分析各种污染指标,求这三天的空气质量等级互不相同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数满足对任意,恒有,且不恒为0.

(1)求的值;

(2)试判断的奇偶性,并加以证明;

(3)若,恒有,求满足不等式的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,AB=2,DE=3.

(1)求到平面的距离

(2)在线段上是否存在一点,使?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,曲线在点处的切线与直线垂直.

1)求的值;

(2)若对于任意的恒成立,求的取值范围;

(3)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 在△中, 点边上, .

(Ⅰ)求

(Ⅱ)若△的面积是, 求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,长方形物体E在雨中沿面P(面积为S)的垂直方向作匀速移动,速度为,雨速沿E移动方向的分速度为E移动时单位时间内的淋雨量包括两部分:(1PP的平行面(只有一个面淋雨)的淋雨量,假设其值与×S成正比,比例系数为;(2)其它面的淋雨量之和,其值为,记E移动过程中的总淋雨量,当移动距离d=100,面积S=时。

1)写出的表达式

2)设0v≤10,0c≤5,试根据c的不同取值范围,确定移动速度,使总淋雨量最少。

查看答案和解析>>

同步练习册答案