精英家教网 > 高中数学 > 题目详情
(2008•湖北模拟)(1+x)7(1-x)的展开式中x2的系数是
14
14
分析:先将问题转化为二项式(x+1)7的系数问题,利用二项展开式的通项公式求出展开式的第r+1项,令x的指数分别等于1,2求出特定项的系数.
解答:解:(1+x)7(1-x)的展开式中x2的系数等于(x+1)7展开式的x的系数的相反数加上(x+1)7展开式的x2的系数
(x+1)7展开式的通项为Tr+1=C7rx7-r
令7-r=1,得r=6故(x+1)7展开式的x的系数为C76=7
令7-r=2得r=5故(x+1)7展开式的x2的系数为C75=21
故展开式中x2的系数是-7+21=14
故答案为:14.
点评:本题主要考查等价转化的能力、考查利用二项展开式的通项公式解决二项展开式的特定项问题,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•湖北模拟)若等比数列的各项均为正数,前n项之和为S,前n项之积为P,前n项倒数之和为M,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•湖北模拟)已知f(x)=ax3+bx2+cx+d为奇函数,且在点(2,f(2))处的切线方程为9x-y-16=0.
(1)求f(x)的解析式;
(2)若y=f(x)+m的图象与x轴仅有一个公共点,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•湖北模拟)某工厂去年某产品的年产量为100万只,每只产品的销售价为10元,固定成本为8元.今年,工厂第一次投入100万元(科技成本),并计划以后每年比上一年多投入100万元(科技成本),预计产量年递增10万只,第n次投入后,每只产品的固定成本为g(n)=
k
n+1
(k>0,k为常数,n∈Z且n≥0),若产品销售价保持不变,第n次投入后的年利润为f(n)万元.
(1)求k的值,并求出f(n)的表达式;
(2)问从今年算起第几年利润最高?最高利润为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•湖北模拟)已知向量
a
=(1,2),向量
b
=(x,-2),且
a
∥(
a
-
b
)
,则实数x等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•湖北模拟)已知向量
a
=(2cosx,tan(x+α))
b
=(
2
sin(x+α),tan(x-α))
,已知角α(α∈(-
π
2
π
2
))
的终边上一点P(-t,-t)(t≠0),记f(x)=
a
b

(1)求函数f(x)的最大值,最小正周期;
(2)作出函数f(x)在区间[0,π]上的图象.

查看答案和解析>>

同步练习册答案