精英家教网 > 高中数学 > 题目详情

【题目】已知点P(2,-1)

(1)求过P点且与原点距离为2的直线l的方程;

(2)求过P点且与原点距离最大的直线l的方程最大距离是多少?

【答案】1x23x4y100 2

【解析】试题分析:第一步首先考虑直线的斜率不存在的情况,然后可设直线方程的点斜式,根据原点到直线的距离为2,列方程求出斜率,得出直线方程;第二步过P点且与原点距离最大的直线就是过P点与OP垂直的直线,P点与原点距离就是原点到直线距离的最大值,OP长即为所求.

试题解析:

(1)①当l的斜率k不存在时显然满足要求,

l的方程为x2

②当l的斜率k存在时,设l的方程为y1k(x2)

kxy2k10.

由点到直线距离公式得

kl的方程为3x4y100.

故所求l的方程为x23x4y100.

(2)易知过P点与原点O距离最大的直线是过P点且与 PO垂直的直线,由lOPklkOP=-1,所以=-2.

由直线方程的点斜式得y12(x2)

2xy50.

即直线2xy50是过P点且与原点O距离最大的直线,

最大距离为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】随着“全面二孩”政策推行,我市将迎来生育高峰.今年新春伊始,宜城各医院产科就已经是一片忙碌,至今热度不减.卫生部门进行调查统计,期间发现各医院的新生儿中,不少都是“二孩”;在市第一医院,共有40个猴宝宝降生,其中20个是“二孩”宝宝;市妇幼保健院共有30个猴宝宝降生,其中10个是“二孩”宝宝. (I)从两个医院当前出生的所有宝宝中按分层抽样方法抽取7个宝宝做健康咨询.
①在市第一医院出生的一孩宝宝中抽取多少个?
②若从7个宝宝中抽取两个宝宝进行体检,求这两个宝宝恰出生不同医院且均属“二孩”的概率;
(Ⅱ)根据以上数据,能否有85%的把握认为一孩或二孩宝宝的出生与医院有关?
附:

P(k2>k0

0.4

0.25

0.15

0.10

k0

0.708

1.323

2.072

2.706

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】比较下列各题中两个幂的值的大小:

(1)2.3,2.4

(2)

(3)(-0.31) ,0.35.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,P是四边形ABCD所在平面外的一点,四边形ABCDDAB60°且边长为a的菱形侧面PAD为正三角形,其所在平面垂直于底面ABCD

1GAD边的中点,求证:BG平面PAD

2求证:ADPB

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知极坐标系的极点与直角坐标系的原点重合,极轴与x轴的非负半轴重合.曲线 (t为参数),曲线C2的极坐标方程为ρ=ρcos2θ+8cosθ. (Ⅰ)将曲线C1 , C2分别化为普通方程、直角坐标方程,并说明表示什么曲线;
(Ⅱ)设F(1,0),曲线C1与曲线C2相交于不同的两点A,B,求|AF|+|BF|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在边长为2a的正方形ABCDEF分别为ABBC的中点沿图中虚线将3个三角形折起使点ABC重合重合后记为点P.

(1)折起后形成的几何体是什么几何体

(2)这个几何体共有几个面每个面的三角形有何特点

(3)每个面的三角形面积为多少

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ﹣k( +lnx),若x=2是函数f(x)的唯一一个极值点,则实数k的取值范围为(
A.(﹣∞,e]
B.[0,e]
C.(﹣∞,e)
D.[0,e)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l1的参数方程为 ,(t为参数),直线l2的参数方程为 ,(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.
(1)写出C的普通方程;
(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)﹣ =0,M为l3与C的交点,求M的极径.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形ABCD中,BCDCAEDCMN分别是ADBE的中点,将三角形ADE沿AE折起,则下列说法正确的是________(填序号).

①不论D折至何位置(不在平面ABC内),都有MN∥平面DEC;②不论D折至何位置,都有MNAE;③不论D折至何位置(不在平面ABC内),都有MNAB;④在折起过程中,一定存在某个位置,使ECAD.

查看答案和解析>>

同步练习册答案