精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=ax+$\frac{1}{x+b}$(a,b∈Z).
(1)求f′(x);
(2)若曲线y=f(x)在点(2,1)处的切线与x轴平行,求f(x)的解析式.

分析 (1)运用导数的运算性质,计算即可得到;(2)求得切线的斜率,由切线与x轴平行,可得a,b的方程,再由切点(2,1)可得a,b的方程,解方程组,可得a,b,再由a,b为整数,可得f(x)的解析式.

解答 解:(1)函数f(x)=ax+$\frac{1}{x+b}$的导数为:
f′(x)=a-$\frac{1}{(x+b)^{2}}$;
(2)曲线y=f(x)在点(2,1)处的切线斜率为k=a-$\frac{1}{(2+b)^{2}}$,
切线与x轴平行,可得a-$\frac{1}{(2+b)^{2}}$=0,
由f(2)=1,可得2a+$\frac{1}{2+b}$=1,
解方程可得a=1,b=-3或a=$\frac{1}{4}$,b=-3,
由a,b∈Z,可得a=1,b=-3.
则f(x)=x+$\frac{1}{x-3}$.

点评 本题考查导数的运用:求切线的斜率,考查运算能力,正确求导和运用导数的几何意义是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.在正方体ABCD-A1B1C1D1中,作截面EFGH(如图所示)交C1D1,A1B1,AB,CD分别于点E,F,G,H,则四边形EFGH的形状是(  )
A.平行四边形B.菱形C.矩形D.梯形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.判断下列函数的奇偶性:
(1)f(x)=cos($\frac{3}{2}$π+2x)+x2sinx;
(2)f(x)=$\sqrt{1-2cosx}$+$\sqrt{2cosx-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知抛物线x2=2y过抛物线的焦点F的直线l交抛物线于P,Q两点,过P,Q分别作抛物线的切线,两切线交于点A,则点A的纵坐标为-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数y=sin(2x-$\frac{π}{6}$).
(1)求函数f(x)的最小正周期和图象的对称轴方程;
(2)求函数f(x)在区间[-$\frac{π}{12}$,$\frac{π}{2}$]上的值域;
(3)由y=sinx的图象经怎样的变换可以得到该函数的图象?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,平面ABC∩平面FBC,其中GH∥DE,求证:GH∥BC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}的前n项和为Sn,且a1=10,an+1=9Sn+10.
(Ⅰ)求证:{an}是等比数列;
(Ⅱ)设bn=$\frac{2}{(lg{a}_{n})(lg{a}_{n+1})}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.椭圆C的左、右焦点为F1(-1,0)、F2(1,0),且点P(1,$\frac{2\sqrt{3}}{3}$)在椭圆C上.
(1)求椭圆C的方程;
(2)设过F1的动直线l交椭圆C于A,B两点,求△F2AB面积的最大值及面积最大时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在空间四边形ABCD中,AB⊥AC,AB⊥BD,AC=2,AB=BD=1,AC与BD所成的角为60°,则CD=2.

查看答案和解析>>

同步练习册答案