【题目】已知函数.
(Ⅰ)当时,求函数的极小值;
(Ⅱ)当时,讨论的单调性;
(Ⅲ)若函数在区间上有且只有一个零点,求的取值范围.
【答案】(Ⅰ);(Ⅱ)详见解析;(Ⅲ)
【解析】
(Ⅰ)由题意,当时,求得,得出函数的单调性,进而求解函数的极值;
(Ⅱ)由,由,得或,分类讨论,即可得到函数的单调区间;
(Ⅲ)由(1)和(2),分当和,分类讨论,分别求得函数的单调性和极值,即可得出相应的结论,进而得到结论.
解:(Ⅰ)当时:,令解得,
又因为当,,函数为减函数;
当,,函数为增函数.
所以,的极小值为.
(Ⅱ).当时,由,得或.
(ⅰ)若,则.故在上单调递增;
(ⅱ)若,则.故当时,;
当时,.
所以在,单调递增,在单调递减.
(ⅲ)若,则.故当时,;
当时,.
所以在,单调递增,在单调递减.
(Ⅲ)(1)当时,,令,得.
因为当时,,当时,,
所以此时在区间上有且只有一个零点.
(2)当时:
(ⅰ)当时,由(Ⅱ)可知在上单调递增,且,,此时在区间上有且只有一个零点.
(ⅱ)当时,由(Ⅱ)的单调性结合,又,
只需讨论的符号:
当时,,在区间上有且只有一个零点;
当时,,函数在区间上无零点.
(ⅲ)当时,由(Ⅱ)的单调性结合,,,此时在区间上有且只有一个零点.
综上所述,.
科目:高中数学 来源: 题型:
【题目】某校高一的320名学生,在电脑培训前后分别参加了一次水平相同的测试,考分都以统一标准划分成“不合格”“合格”“优秀”三个等级.为了了解电脑培训的效果,用抽签方式得到其中32名学生的两次考分等级,所绘制的统计图如图所示.请结合图中信息回答下列问题:
(1)这32名学生经过培训,考分等级“不合格”的百分比由________下降到________;
(2)估计该校高一全体学生中,培训后考分等级为“合格”和“优秀”的学生共有________名.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是某手机商城2018年华为、苹果、三星三种品牌的手机各季度销量的百分比堆积图(如:第三季度华为销量约占50%,苹果销量约占20%,三星销量约占30%).根据该图,以下结论中一定正确的是( )
A.华为的全年销量最大B.苹果第二季度的销量大于第三季度的销量
C.华为销量最大的是第四季度D.三星销量最小的是第四季度
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了了解高三学生的心理健康状况,某校心理健康咨询中心对该校高三学生的睡眠状况进行抽样调查,随机抽取了50名男生和50名女生,统计了他们进入高三后的第一个月平均每天睡眠时间,得到如下频数分布表.规定:“平均每天睡眠时间大于等于8小时”为“睡眠充足”,“平均每天睡眠时间小于8小时”为“睡眠不足”.
高三学生平均每天睡眠时间频数分布表
睡眠时间(小时) | [5,6) | [6,7) | [7,8) | [8,9) | [9,10) |
男生(人) | 4 | 18 | 10 | 12 | 6 |
女生(人) | 2 | 20 | 16 | 8 | 4 |
(Ⅰ)请将下面的列联表补充完整:
睡眠充足 | 睡眠不足 | 合计 | |
男生(人) | 32 | ||
女生(人) | 12 | ||
总计 | 100 |
(Ⅱ)根据已完成的2×2列联表,判断是否有90%的把握认为“睡是否充足与性别有关”?
附:参考公式=
P(K2≥k) | 0.100 | 0.050 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 6.636 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着支付宝、微信等支付方式的上线,越来越多的商业场景可以实现手机支付.为了解各年龄层的人使用手机支付的情况,随机调查了50个人,并把调查结果制成下表:
(1)把年龄在称为中青年,年龄在称为中老年,请根据上表完成列联表,是否有以上的把握判断使用手机支付与年龄(中青年、中老年)有关联?
(2)若分别从年龄在、的被调查者中各随机选取2人进行调查,记选中的4人中使用手机支付的人数记为,求.
附:可能用到的公式:,其中
0.100 | 0.050 | 0.025 | 0.010 | 0.005 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com