精英家教网 > 高中数学 > 题目详情
已知x,y,z是实数,x+2y+3z=1,则x2+2y2+3z2的最小值为
 
考点:二维形式的柯西不等式
专题:选作题,不等式
分析:利用条件x+2y+3z=1,构造柯西不等式(x+2y+3z)2≤(x2+2y2+3z2)(12+12+12)进行解题即可.
解答: 解:由柯西不等式可知:(x+2y+3z)2≤(x2+2y2+3z2)(12+12+12
故x2+2y2+3z2
1
3
,即:x2+2y2+3z2的最小值为
1
3

故答案为:
1
3
点评:本题主要考查了函数的最值,以及柯西不等式的应用,解题的关键是利用(x+2y+3z)2≤(x2+2y2+3z2)(12+12+12)进行解决.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设z1、z2∈C,则“z12+z22=0”是“z1=z2=0”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

小明下学期就要上大学了,他了解到大学生都要通过CET4(国家英语四级)考试,需要词汇量在高中的基础上,再增加大约1100个.他准备从新学期开始,利用一学期(以20周计)完成词汇量的要求,早日通过CET4考试.设计了2套方案:
方案一:第一周背50个单词,以后每周都比上一周多背2个,直到全部单词背完;
方案二:每周背同样数量的单词,在同一周内,星期一背2个单词,星期二背的是星期一的2倍,同样的规律一直背到星期五,周末两天休息.试问:
(Ⅰ)按照方案一,第10周要背多少个单词?
(Ⅱ)如果想较快背完单词,请说明选择哪一种方案比较合适?

查看答案和解析>>

科目:高中数学 来源: 题型:

有一段公路安装电线线路需要用80根电线杆,用一辆货车从堆放电线 杆的料场,每次装载8根电线杆,运到1050米远的施工地,在1050米处放一根,以后每隔50米放一根,将8根电线杆放完后,返回料场,再次装载,继续运送安装. 问:(1)这辆货车在安放完第一车8根电线杆后,返回料场,它的总行程为多少?
(2)这辆货车完成全部80根电线杆的运输任务,并返回料场,它的总行程为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

四棱锥P-ABCD中,底面ABCD为菱形,且∠DAB=60°,点P为平面ABCD所在平面外的一点,若△PAD为等边三角形,求证:PB⊥AD.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知圆x2+y2-12x+32=0的圆心为Q,过点P(0,2)且斜率为k的直线与圆Q相交于不同的两点A,B.
(1)求k的取值范围;
(2)求AB中点的轨迹方程;
(3)以OA,OB为邻边作平行四边形OADB,是否存在常数k,使得直线OD与PQ平行?如果存在,求k值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,已知a,b,c成等比数列,则∠B的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,点P到两点(
2
,0),(-
2
,0)的距离之和等于4,设点P的轨迹为C,直线y=kx+1与C交与A,B两点.
(1)求点P的轨迹C的方程;
(2)线段AB的长是3,求实数k;
(3)若点A在第四象限,判断|
OA
|与|
OB
|的大小,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

平面内,若M到定点F1(0,-1)、F2(0,1)的距离之和为4,则M的轨迹方程为(  )
A、
y2
16
+
x2
4
=1
B、
x2
16
+
y2
4
=1
C、
y2
4
+
x2
3
=1
D、
x2
4
+
y2
3
=1

查看答案和解析>>

同步练习册答案