精英家教网 > 高中数学 > 题目详情
17.求曲线x${\;}^{\frac{2}{3}}$+y${\;}^{\frac{2}{3}}$=a${\;}^{\frac{2}{3}}$在点($\frac{\sqrt{2}}{4}$a,$\frac{\sqrt{2}}{4}$a)处的切线方程.

分析 对x${\;}^{\frac{2}{3}}$+y${\;}^{\frac{2}{3}}$=a${\;}^{\frac{2}{3}}$两边对x求导,可得$\frac{2}{3}$${x}^{-\frac{1}{3}}$+$\frac{2}{3}$${y}^{-\frac{1}{3}}$•y′=0,代入切点的坐标,可得斜率,再由点斜式方程,可得切线的方程.

解答 解:对x${\;}^{\frac{2}{3}}$+y${\;}^{\frac{2}{3}}$=a${\;}^{\frac{2}{3}}$两边对x求导,可得
$\frac{2}{3}$${x}^{-\frac{1}{3}}$+$\frac{2}{3}$${y}^{-\frac{1}{3}}$•y′=0,
即有y′=-$\frac{{x}^{-\frac{1}{3}}}{{y}^{-\frac{1}{3}}}$,
可得在点($\frac{\sqrt{2}}{4}$a,$\frac{\sqrt{2}}{4}$a)处的切线斜率为k=-1,
则在点($\frac{\sqrt{2}}{4}$a,$\frac{\sqrt{2}}{4}$a)处的切线方程为y-$\frac{\sqrt{2}}{4}$a=-(x-$\frac{\sqrt{2}}{4}$a),
即为x+y-$\frac{\sqrt{2}}{2}$a=0.

点评 本题考查导数的运用:求切线的方程,考查直线方程的求法,两边同时对x求导是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.函数f(x)=(a2-3a+3)logax是对数函数,则a的值是(  )
A.a=1或a=2B.a=1C.a=2D.a>0或a≠1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=2-x-1的定义域、值域是(  )
A.定义域是R,值域是RB.定义域是R,值域为(0,+∞)
C.定义域是(0,+∞),值域为RD.定义域是R,值域是(-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.一元二次方程x2+2x+m=0有实数解的一个必要不充分条件为(  )
A.m<1B.m≤1C.m≥1D.m<2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.49${\;}^{lo{g}_{\frac{1}{7}}3}$=$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.两条异面直线互成60°,过空间中任一点A可以作出几个平面与两异面直线都成45°角.(  )
A.一个B.两个C.三个D.四个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.动圆M与定圆C1:x2+y2+6x=0外切,且内切于定圆C2:x2+y2-6x=40,求动圆圆心M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知a>0且a≠1,f(logax)=$\frac{a}{{a}^{2}-1}$•(x-x-1).
(1)求函数f(x)的表达式;
(2)判断f(x)的奇偶性和单调性;(不必证明)
(3)当f(x)定义域为(-1,1)时,解关于m的不等式:f(1-m)+f(1-m2)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.信号兵用3种不同颜色的旗子各一面,打出3面时最多能打出不同的信号有多少个?

查看答案和解析>>

同步练习册答案