精英家教网 > 高中数学 > 题目详情
5.如图,甲、乙两楼相距20米,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则乙楼的高是(  )
A.$\frac{40\sqrt{3}}{3}$B.20$\sqrt{3}$C.40D.10$\sqrt{2}$

分析 设甲、乙两楼的位置分别为CD、AB如图所示.直角三角形ABD中利用三角函数的定义,结合题中数据算出BD=$\frac{40\sqrt{3}}{3}$m,再在△ABD中,算出∠BAD=∠BDA=30°,从而得到AB=BD=$\frac{40\sqrt{3}}{3}$m,由此得到乙楼的高.

解答 解:设甲、乙两楼的位置分别为CD、AB如图所示
∵Rt△BDE中,BE=AC=20m,∠BDE=60°
∴BD=$\frac{BE}{sin60°}$=$\frac{40\sqrt{3}}{3}$m
又∵△ABD中,∠BAD=∠BDA=30°
∴△ABD为等腰三角形,得AB=BD=$\frac{40\sqrt{3}}{3}$m
即乙楼的高$\frac{40\sqrt{3}}{3}$m
故选:A.

点评 本题给出两幢楼的距离,在已知楼底望楼顶的仰角和楼顶望楼顶的俯角情况下,求乙楼的高度.着重考查了直角三角形中三角函数的定义和解三角形的实际应用等知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知指数函数图象过点$(1,\frac{1}{2})$,则f(-2)的值为(  )
A.$\frac{1}{2}$B.4C.$\frac{1}{4}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知椭圆E的中心为坐标原点,离心率为$\frac{\sqrt{3}}{2}$,E的右焦点与抛物线C:y=12x2的焦点重合,A,B是C的准线与E的两个交点,则|AB|=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.对于定义在[0,+∞)上的函数f(x),若函数y=f(x)-(ax+b)满足:①在区间[0,+∞)上单调递减;②存在常数p,使其值域为(0,p],则称函数g(x)=ax+b为f(x)的“渐近函数”
(1)证明:函数g(x)=x+1是函数f(x)=$\frac{{x}^{2}+2x+3}{x+1}$,x∈[0,+∞)的渐近函数,并求此时实数p的值;
(2)若函数f(x)=$\sqrt{{x}^{2}+1}$,x∈[0,+∞)的渐近函数是g(x)=ax,求实数a的值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若抛物线y2=4x与直线x-y-1=0交于 A,B两点,则|AB|=(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设命题p:$\frac{2x}{x-1}$<1,命题q:x2-(2a+1)x+a(a+1)<0,若¬p是¬q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设全集U={0,1,2,3,4},集合A={0,2,4},用列举法表示∁UA={1,3}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.解不等式组:$\left\{\begin{array}{l}{\frac{x-3}{x}≥2}\\{|4x+5|>3}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设函数f(x)=ax2+(b-1)x+1(a>0)的两个零点为x1,x2
(1)若x1<2<x2<4,求证:2a>b;
(2)若|x1|<2,|x1-x2|=2,求b的取值范围.

查看答案和解析>>

同步练习册答案