精英家教网 > 高中数学 > 题目详情

【题目】据统计,仅在北京地区每天就有500万单快递等待派送,近5万多名快递员奔跑在一线,快递网点人员流动性也较强,各快递公司需要经常招聘快递员,保证业务的正常开展.下面是50天内甲、乙两家快递公司的快递员的每天送货单数统计表:

送货单数

30

40

50

60

天数

10

10

20

10

5

15

25

5

已知这两家快递公司的快递员的日工资方案分别为:甲公司规定底薪元,每单抽成元;乙公司规定底薪元,每日前单无抽成,超过单的部分每单抽成元.

(1)分别求甲、乙快递公司的快递员的日工资(单位:元)与送货单数的函数关系式;

(2)若将频率视为概率,回答下列问题:

记甲快递公司的快递员的日工资为(单位:元),求的分布列和数学期望;

小赵拟到甲、乙两家快递公司中的一家应聘快递员的工作,如果仅从日收入的角度考虑,请你利用所学的统计学知识为他作出选择,并说明理由.

【答案】(1);(2)见解析

【解析】试题(1)根据题意可得利用分段函数进行表示;(2)①的所有可能取值为,分别计算出其对应的概率,得分布列得期望;②先求出乙快递公司的快递员这50天的工资和为,得其平均工资为,将其和106比较得结果.

试题解析:(1)甲快递公司的快递员的日工资(单位:元)与送货单数的函数关系式为:

乙快递公司的快递员的日工资(单位:元)与送货单数的函数关系式为:

(2)①由题中表格易知的所有可能取值为

所以的分布列为

90

100

110

120

(元).

②乙快递公司的快递员这50天的工资和为:

(元),

所以乙快递公司的快递员的日平均工资为(元),

由①知,甲快递公司的快递员的日平均工资为元.

,即时,小赵应选择甲快递公司;

,即时,小赵选择甲、乙快递公司均可;

,即时,小赵应选择乙快递公司.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知Sn表示数列{an}的前n项和,若对任意的n∈N*满足an1ana2 , 且a3=2,则S2016=( )
A.1006×2013
B.1006×2014
C.1008×2015
D.1007×2015

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的圆心在直线上.

(Ⅰ)若圆Cy轴相切,求圆C的方程;

(Ⅱ)当a=0时,问在y轴上是否存在两点AB,使得对于圆C上的任意一点P,都有,若有,试求出点AB的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知圆C:x2+y2﹣4x=0及点A(﹣1,0),B(1,2)

(1)若直线l平行于AB,与圆C相交于M,N两点,MN=AB,求直线l的方程;
(2)在圆C上是否存在点P,使得PA2+PB2=12?若存在,求点P的个数;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数fx)=x3﹣3x在区间(a,6﹣a2)上有最小值,则实数a的取值范围是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若y=|3sin(ωx+ )+2|的图象向右平移 个单位后与自身重合,且y=tanωx的一个对称中心为( ,0),则ω的最小正值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E过点A(2,3),对称轴为坐标轴,焦点F1F2x轴上,离心率,∠F1AF2的平分线所在直线为l

(1)求椭圆E的方程;

(2)设lx轴的交点为Q,求点Q的坐标及直线l的方程;

(3)在椭圆E上是否存在关于直线l对称的相异两点?若存在,请找出;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣ ,g(x)= ﹣1. (Ⅰ)若a>0,试判断f(x)在定义域内的单调性;
(Ⅱ)若f(x)在[1,e]上的最小值为 ,求a的值;
(Ⅲ)当a=0时,若x≥1时,恒有xf(x)≤λ[g(x)+x]成立,求λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,∠ACB=90°,BB1=3,AC=BC=2,D,E分别为AB,BC的中点,F为BB1上一点,且 =
(1)求证:平面CDF⊥平面A1C1E;
(2)求二面角C1﹣CD﹣F的余弦值.

查看答案和解析>>

同步练习册答案