精英家教网 > 高中数学 > 题目详情
(2013•郑州一模)如图,△ABC是等腰直角三角形,∠ACB=90°,AC=2a,D,E分别为AC,AB的中点,沿DE将△ADE折起,得到如图所示的四棱锥A′-BCDE.
(Ⅰ)在棱A′B上找一点F,使EF∥平面A′CD•
(Ⅱ)求四棱锥A′-BCDF体积的最大值.
分析:(I)取A'C的中点G,连结DG,EF,GF,则由中位线定理及平行四边形判定定理可得四边形DEFG是平行四边形,进而可得EF∥DG,由线面平行的判定定理可得F为棱A'B的中点时,EF∥平面A'CD.
(II)在平面A'CD内作A'H⊥CD于点H,可得A'H就是四棱锥A'-BCDE的高,进而可得点H和D重合时,四棱锥A'-BCDE的体积取最大值.
解答:解:(I)F为棱A'B的中点.理由如下:
取A'C的中点G,连结DG,EF,GF,
则由中位线定理得DE∥BC,DE=
1
2
BC
,且GF∥BC,GF=
1
2
BC

所以DE∥GF,DE=GF,从而四边形DEFG是平行四边形,
EF∥DG.
又EF?平面A'CD,DG?平面A'CD,
故F为棱A'B的中点时,
EF∥平面A'CD.----(6分)
(II)在平面A'CD内作A'H⊥CD于点H,
DE⊥A′D
DE⊥CD
A′D∩CD=D
⇒DE⊥平面A′CD⇒A′H⊥DE

又DE∩CD=D,
∴A'H⊥底面BCDE,即A'H就是四棱锥A'-BCDE的高.
由A'H≤AD知,点H和D重合时,四棱锥A'-BCDE的体积取最大值.----(10分)
此时V四棱锥A′-BCDE=
1
3
S梯形BCDE•AD=
1
3
×
1
2
(a+2a)a•a=
1
2
a3

故四棱锥A'-BCDE体积的最大值为
1
2
a3
.-----(12分)
点评:本题考查的知识点是直线与平面平行的判定,棱锥的体积,其中解答(I)的关键是熟练掌握线面平行的判定定理,(II)的关键是分析出点H和D重合时,四棱锥A'-BCDE的体积取最大值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•郑州一模)直线y=kx+1与曲线y=x3+ax+b相切于点A(1,3),则2a+b的值等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•郑州一模)若复数z=2-i,则
.
z
+
10
z
等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•郑州一模)我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架歼-15飞机准备着舰.如果甲、乙两机必须相邻着舰,而丙、丁两机不能相邻着舰,那么不同的着舰方法 有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•郑州一模)执行如图所示的程序框图,若输入x=2,则输出y的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•郑州一模)在三棱锥A-BCD中,侧棱AC、AC、AD两两垂直,△ABC、△ACD、△ADB 的面积分别为
2
2
3
2
6
2
,则该三棱锥外接球的表面积为(  )

查看答案和解析>>

同步练习册答案