精英家教网 > 高中数学 > 题目详情
两圆x2+y2+2ax+a2-4=0和x2+y2-4by-1+4b2=0恰有三条公切线,若a∈R,b∈R,且ab≠0,则的最小值为( )
A.
B.
C.1
D.3
【答案】分析:由题意可得 两圆相外切,根据两圆的标准方程求出圆心和半径,由 =3,得到 =1,
=+=++,使用基本不等式求得的最小值.
解答:解:由题意可得 两圆相外切,两圆的标准方程分别为 (x+a)2+y2=4,x2+(y-2b)2=1,
圆心分别为(-a,0),(0,2b),半径分别为 2和1,故有 =3,∴a2+4b2=9,
=1,∴=+=++ 
+2=1,当且仅当 = 时,等号成立,
故选  C.
点评:本题考查两圆的位置关系,两圆相外切的性质,圆的标准方程的特征,基本不等式的应用,得到  =1,
是解题的关键和难点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

过点A(a,a)可作圆x2+y2-2ax+a2+2a-3=0的两条切线,则实数a的取值范围为(  )
A、a<-3或1<a<
3
2
B、1<a<
3
2
C、a<-3
D、-3<a<1或a>
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

若两直线y=x+2a,和y=2x+a+1的交点为P,P在圆x2+y2=4的内部,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若过点A(a,a)可作圆x2+y2-2ax+a2+2a-3=0的两条切线,则实数a的取值范围是
(-∞,-3)∪(1,
3
2
(-∞,-3)∪(1,
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

若-4≤a≤3,则过点A(a,a)可作圆x2+y2-2ax+a2+2a-3=0的两条切线的概率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

以下五个命题中:
①若两直线平行,则两直线斜率相等;
②设F1、F2为两个定点,a为正常数,且||PF1|-|PF2||=2a,则动点P的轨迹为双曲线;
③方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;
④对任意实数k,直线l:kx-y+1-k=0与圆x2+y2-2y-4=0的位置关系是相交;
⑤P为椭圆
x2
a2
+
y2
b2
=1(a>b>0)上一点,F为它的一个焦点,则以PF为直径的圆与以长轴为直径的圆相切.
其中真命题的序号为
③④⑤
③④⑤
.(写出所有真命题的序号)

查看答案和解析>>

同步练习册答案