精英家教网 > 高中数学 > 题目详情
10.已知α,β∈($\frac{3π}{4}$,π),sin(α+β)=-$\frac{3}{5}$,sin(β-$\frac{π}{4}$)=$\frac{12}{13}$.
(1)求cos(β+$\frac{π}{4}$)的值;
(2)求cos(α+$\frac{π}{4}$)的值;
(3)求cos(α-β)的值.

分析 由题意和同角三角函数基本关系可得cos(α+β)=$\frac{4}{5}$,cos(β-$\frac{π}{4}$)=-$\frac{5}{13}$,
(1)由诱导公式可得cos(β+$\frac{π}{4}$)=-sin(β-$\frac{π}{4}$)=-$\frac{12}{13}$;
(2)cos(α+$\frac{π}{4}$)=cos[(α+β)-(β-$\frac{π}{4}$)]=cos(α+β)cos(β-$\frac{π}{4}$)+sin(α+β)sin(β-$\frac{π}{4}$),代值计算可得;
(3)由(1)(2)和同角三角函数基本关系可得sin(α+$\frac{π}{4}$)=-$\frac{33}{65}$,sin(β+$\frac{π}{4}$)=-$\frac{5}{13}$,可得cos(α-β)=cos[(α+$\frac{π}{4}$)-(β+$\frac{π}{4}$)]=cos(α+$\frac{π}{4}$)cos(β+$\frac{π}{4}$)+sin(α+$\frac{π}{4}$)sin(β+$\frac{π}{4}$),代值计算可得.

解答 解:∵α,β∈($\frac{3π}{4}$,π),sin(α+β)=-$\frac{3}{5}$,sin(β-$\frac{π}{4}$)=$\frac{12}{13}$,
∴cos(α+β)=$\frac{4}{5}$,cos(β-$\frac{π}{4}$)=-$\frac{5}{13}$,
(1)cos(β+$\frac{π}{4}$)=cos[(β-$\frac{π}{4}$)+$\frac{π}{2}$]=-sin(β-$\frac{π}{4}$)=-$\frac{12}{13}$;
(2)cos(α+$\frac{π}{4}$)=cos[(α+β)-(β-$\frac{π}{4}$)]
=cos(α+β)cos(β-$\frac{π}{4}$)+sin(α+β)sin(β-$\frac{π}{4}$)
=$\frac{4}{5}×(-\frac{5}{13})$+(-$\frac{3}{5}$)×$\frac{12}{13}$=-$\frac{56}{65}$;
(3)结合题意由(1)(2)可得sin(α+$\frac{π}{4}$)=-$\frac{33}{65}$,sin(β+$\frac{π}{4}$)=-$\frac{5}{13}$
∴cos(α-β)=cos[(α+$\frac{π}{4}$)-(β+$\frac{π}{4}$)]
=cos(α+$\frac{π}{4}$)cos(β+$\frac{π}{4}$)+sin(α+$\frac{π}{4}$)sin(β+$\frac{π}{4}$)
=$(-\frac{56}{65})×(-\frac{12}{13})$+$(-\frac{33}{65})×(-\frac{5}{13})$=$\frac{837}{845}$

点评 本题考查两角和与差的三角函数公式,涉及整体法和诱导公式以及同角三角函数基本关系,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.下列各式中,正确的序号是②④⑤
①0={0};          
②0∈{0};        
③{1}∈{1,2,3};
④{1,2}⊆{1,2,3};                
⑤{a,b}⊆{a,b}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图,在圆锥SO中,其母线长为2,底面半径为$\frac{1}{2}$,一只虫子从底面圆周上一点A出发沿圆锥表面爬行一周后又回到A点,则这只虫子所爬过的最短路程是2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.数列{an},an≥0,a1=0,an+12+an+1-1=an2,n∈N*
(1)求证:an<1;
(2)求证:数列{an}递增;
(3)求证:$\frac{1}{1+{a}_{1}}$+$\frac{1}{(1+{a}_{1})(1+{a}_{2})}$+…+$\frac{1}{(1+{a}_{1})(1+{a}_{2})…(1+{a}_{n})}$<3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在一定范围内,对7块土质相同、形状大小也相同的试验田进行化肥用量对水稻产量影响的试验,得到的对应数据如表(单位:kg):
 施化肥量x 15 20 25 30 35 40 45
 水稻产量y 330 345 365 405 445 450 455
根据表可得回归方程$\widehat{y}$=bx+$\widehat{a}$中的b为4.8,据此估计,当化肥用量为55kg时,水稻产量为519.3kg.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图的平面直角坐标系中,O为坐标原点,点B在单位圆上,A(2,0),∠AOB=θ,△ABC为等边三角形.
(1)若直线OB的斜率为$\frac{2}{3}$,求$\frac{si{n}^{2}θ-sin2θ}{co{s}^{2}θ+cos2θ}$的值;
(2)若θ∈(0,π),求四边形OACB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.教育储蓄是一种零存整取定期储蓄存款,它享受整存整取利率,利息免税,教育储蓄的对象为在校小学四年级(含四年级)以上的学生.假设零存整取3年期教育储蓄的月利率为千分之两点一.
(1)欲在3年后一次支取本息合计2万元,每月大约存入多少元?
(2)零存整取3年期教育储蓄每月至多存入多少元,3年后本息合计约为5万元(精确到1元)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.不等式$\frac{3{x}^{2}+2x+2}{{x}^{2}+x+1}≥m$对任意实数x都成立,则实数m的取值范围是m≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$,$\overrightarrow{d}$,$\overrightarrow{e}$如图所示,解答下列各题:
(1)用$\overrightarrow{a}$,$\overrightarrow{d}$,$\overrightarrow{e}$表示$\overrightarrow{DB}$;
(2)用$\overrightarrow{b}$,$\overrightarrow{c}$表示$\overrightarrow{DB}$;
(3)用$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{e}$表示$\overrightarrow{EC}$;
(4)用$\overrightarrow{d}$,$\overrightarrow{c}$表示$\overrightarrow{EC}$.

查看答案和解析>>

同步练习册答案