精英家教网 > 高中数学 > 题目详情
正方体ABCD-A1B1C1D1中,异面直线AC与BD1所成角为______.
如图,连接BD1
则BD是BD在平面ABCD上的射影,
又AC⊥BD,由三垂线定理可得:
BD1⊥AC,
BD1与直线AC所求的角是直角,
故答案为:90°.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

如图,已知正三棱柱ABC-A1B1C1(底面是正三角形,侧棱垂直底面)异面直线AC与B1C1所成的角是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,已知点P是正方体ABCD-A1B1C1D1的棱A1D1上的一个动点,设异面直线AB与CP所成的角为α,则cosα的最小值是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

空间四边形ABCD中,AD=BC=2,E,F分别是AB,CD的中点,EF=
3
,则异面直线AD,BC所成的角为(  )
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

将图合成一个正方体后,直线PR与QR所成角的余弦是(  )
A.0B.
1
5
C.-
1
5
D.-
1
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四棱锥P-ABCD中,底面ABCD是一直角梯,∠BAD=90°,ADBC,AB=BC=a,AD=2a,PA⊥底面ABCD,PD与底面成30°角.
(1)若AE⊥PD,E为垂足,求证:BE⊥PD;
(2)在(1)的条件下,求异面直线AE与CD所成角的余弦值;
(3)求平面PAB与平面PCD所成的锐二面角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方体ABCD-A1B1C1D1中,下列几种说法正确的是(  )
A.A1C1⊥ADB.D1C1⊥AB
C.AC1与DC成45°角D.A1C1与B1C成60°角

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在正方体ABCD-A1B1C1D中,异面直线A1D与D1C所成的角为______度;直线A1D与平面AB1C1D所成的角为______度.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在棱长为2的正方体ABCD-A1B1C1D1中,M,N分别是A1A,B1B的中点.
(1)求直线D1N与平面A1ABB1所成角的大小;
(2)求直线CM与D1N所成角的正弦值;
(3)(理科做)求点N到平面D1MB的距离.

查看答案和解析>>

同步练习册答案