精英家教网 > 高中数学 > 题目详情
3.如图,已知在侧棱垂直于底面的三棱柱ABC-A1B1C1中,AC=3,AB=5,BC=4,AA1=4点D是AB的中点.
(1)求证:AC1∥平面B1DC;
(2)求三棱锥A1-B1CD的体积.

分析 (1)设B1C∩BC1=E,连结DE,则DE∥AC1,由此能证明AC1∥平面B1DC.
(2)在△ABC中,过C作CF⊥AB,垂足为F,由${V}_{{A}_{1}-{B}_{1}CD}$=${V}_{C-{A}_{1}D{B}_{1}}$,能求出三棱锥A1-B1CD的体积.

解答 证明:(1)设B1C∩BC1=E,
∵在侧棱垂直于底面的三棱柱ABC-A1B1C1中BB1C1C是矩形,∴E是BC1的中点,
连结DE,∵点D是AB的中点,∴DE∥AC1
∵DE?平面B1DC,AC1?平面B1DC,
∴AC1∥平面B1DC.
解:(2)在△ABC中,过C作CF⊥AB,垂足为F,
由面ABB1A1⊥面ABC,知CF⊥面ABB1A1
∴${V}_{{A}_{1}-{B}_{1}CD}$=${V}_{C-{A}_{1}D{B}_{1}}$,
∵${S}_{△D{A}_{1}{B}_{1}}$=$\frac{1}{2}{A}_{1}{B}_{1}•A{A}_{1}$=$\frac{1}{2}×5×4=10$,$CF=\frac{AC•BC}{AB}$=$\frac{3×4}{5}=\frac{12}{5}$.
三棱锥A1-B1CD的体积${V}_{{A}_{1}-{B}_{1}CD}$=${V}_{C-{A}_{1}D{B}_{1}}$=$\frac{1}{3}×10×\frac{12}{5}=8$.

点评 本题考查线面平行的证明,考查三棱锥的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知f(x)=$\left\{\begin{array}{l}{e^x}+ax,x>0\\ \frac{1}{e^x}-ax,x<0\end{array}$,若函数f(x)有四个零点,则实数a的取值范围是(  )
A.$({-∞,-\frac{1}{e}})$B.(-∞,-e)C.(e,+∞)D.$({\frac{1}{e},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在三棱柱ABC-A1B1C1中,侧棱垂直底面,各棱长均为2,D为AB的中点.
(1)求证:BC1∥平面A1CD;
(2)求证:平面A1CD⊥平面ABB1A1
(3)求A1B1与平面A1CD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知A是射线x+y=0(x≤0)上的动点,B是x轴正半轴的动点,若直线AB与圆x2+y2=1相切,则|AB|的最小值是$2+2\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.拟定从甲地到乙地通话m分钟的电话费由f(m)=1.06(0.5•{m}+1)(元)决定,其中m>0,{m}是大于或等于m的最小整数,(如:{3}=3,{3.8}=4,{3.1}=4),则从甲地到乙地通话时间为5.5分钟的电话费为(  )
A.3.71元B.3.97元C.4.24元D.4.77元

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.从1,2,…,9这九个数中,随机抽取3个不同的数,则这3个数的和为奇数的概率是(  )
A.$\frac{5}{9}$B.$\frac{4}{9}$C.$\frac{11}{21}$D.$\frac{10}{21}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知${(3{x^2}+\sqrt{x})^n}$的展开式各项系数和为M,${(3{x^2}-\sqrt{x})^{n+5}}$的展开式各项系数和为N,(x+1)n的展开式各项的系数和为P,且M+N-P=2016,试求${(2{x^2}-\frac{1}{x^2})^{2n}}$的展开式中:
(1)二项式系数最大的项;
(2)系数的绝对值最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知抛物线y2=2px(p>0),F为其焦点,l为其准线,过F作一条直线交抛物线于A,B两点,A′,B′分别为A,B在l上的射线,M为A′B′的中点,给出下列命题:
①A′F⊥B′F;
②AM⊥BM;
③A′F∥BM;
④A′F与AM的交点在y轴上;
⑤AB′与A′B交于原点.
其中真命题的是①②③④⑤.(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)=2sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分图象如图所示,则ω,φ的值分别是(  )
A.2,-$\frac{π}{6}$B.2,-$\frac{π}{3}$C.4,-$\frac{π}{3}$D.4,-$\frac{π}{6}$

查看答案和解析>>

同步练习册答案