精英家教网 > 高中数学 > 题目详情
20.在平面直角坐标系xOy中,F1,F2分别为椭圆$\frac{x^2}{9}+\frac{y^2}{4}=1$的左、右焦点,若点P在椭圆上,且PF1=2,则PF2的值是4.

分析 椭圆$\frac{x^2}{9}+\frac{y^2}{4}=1$焦点在x轴上,a=3,椭圆的定义可知:丨PF1丨+丨PF2丨=2a=6,则丨PF2丨=4.

解答 解:由题意可知:椭圆$\frac{x^2}{9}+\frac{y^2}{4}=1$焦点在x轴上,a=3,b=2,c=$\sqrt{5}$,
由椭圆的定义可知:丨PF1丨+丨PF2丨=2a=6,
由丨PF1丨=2,则丨PF2丨=4,
∴丨PF2丨的值为4,
故答案为:4.

点评 本题考查椭圆的定义,考查椭圆方程的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.在△ABC中,角A,B,C所对的边分别为a,b,c,已知acosB+bcosA=2ccosC.
(1)求角C的大小;
(2)若a=5,b=8,求边c的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在正方体ABCD-A1B1C1D1中,异面直线AD,BD1所成角的余弦值为$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知抛物线y2=2x,两点M(1,0),N(3,0).
(Ⅰ)求点M到抛物线准线的距离;
(Ⅱ)过点M的直线l交抛物线于两点A,B,若抛物线上存在一点R,使得A,B,N,R四点构成平行四边形,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知${a_n}=2n(n∈{N^*})$,把数列{an}的各项按如图的规律排成一个三角形数阵,记F(p,q)表示第p行从左至右的第q个数,则F(8,6)的值为110.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图,将全体正奇数排成一个三角形数阵,根据以上排列规律,数阵中第8行(从上向下数)第3个数(从左向右数)是95.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若将函数f(x)=$\frac{1}{2}$sin(2x+$\frac{π}{3}$)图象上的每一个点都向左平移$\frac{π}{3}$个单位,得到g(x)的图象,则函数g(x)的单调递增区间为(  )
A.[kπ-$\frac{π}{4}$,kπ+$\frac{π}{4}$](k∈Z)B.[kπ+$\frac{π}{4}$,kπ+$\frac{3π}{4}$](k∈Z)
C.[kπ-$\frac{2π}{3}$,kπ-$\frac{π}{6}$](k∈Z)D.[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如果x=[x]+{x},[x]∈Z,0≤{x}<1,就称[x]表示x的整数部分,{x}表示x的小数部分.已知数列{an}满足a1=$\sqrt{5}$,an+1=[an]+$\frac{1}{\{{a}_{n}\}}$,则a2017等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求斜率是直线y=-$\sqrt{3}$x+1的斜率的-$\frac{1}{3}$,且分别满足下列条件的直线方程
(1)经过点($\sqrt{3}$,-1);
(2)在y轴上的截距为-5.

查看答案和解析>>

同步练习册答案