【题目】数列{an}是等差数列,a1=f(x+1),a2=0,a3=f(x-1),其中f(x)=x2-4x+2.
(1)求通项公式an;
(2)若数列{an}为递增数列,令bn=an+1+an+2+an+3+an+4,求数列{}的前n项和Sn.
【答案】(1)当x=1时,an =2n-4,当x=3时, an=4-2n;;(2)
【解析】
(1)题目给出了一个等差数列的前3项,根据等差中项概念列式a1+a3=2a2,然后把a1和a3代入得到关于x的方程,解方程,求出x后再分别代回a1=f(x+1)求a1,则d也可求,所以通项公式可求.
(2)利用数列是递增数列求出通项公式,化简数列的通项公式,通过裂项消项法求解数列的和即可.
解:(1)数列{an}为等差数列,所以a1+a3=2a2,
即f(x+1)+f(x-1)=0,又f(x)=x2-4x+2,
所以(x+1)2-4(x+1)+2+(x-1)2-4(x-1)+2=0,整理得x2-4x+3=0,解得x=1或x=3.
当x=1时,a1=f(x+1)=f(2)=22-4×2+2=-2,d=a2-a1=0-(-2)=2,
∴an=a1+(n-1)d=-2+2(n-1)=2n-4.
当x=3时,a1=f(x+1)=f(4)=42-4×4+2=2,d=0-2=-2.所以an=4-2n.
综上:当x=1时,an =2n-4;当x=3时, an=4-2n.
(2)数列{an}为递增数列,d>0,
所以数列{an}的通项公式为an=2n-4.
bn=an+1+an+2+an+3+an+4=8n+4,
==,
数列{}的前n项和Sn==.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,圆的普通方程为. 在以坐标原点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为 .
(Ⅰ) 写出圆 的参数方程和直线的直角坐标方程;
( Ⅱ ) 设直线 与轴和轴的交点分别为,为圆上的任意一点,求的取值范围.
【答案】(1);.
(2).
【解析】【试题分析】(I)利用圆心和半径,写出圆的参数方程,将圆的极坐标方程展开后化简得直角坐标方程.(II)求得两点的坐标, 设点,代入向量,利用三角函数的值域来求得取值范围.
【试题解析】
(Ⅰ)圆的参数方程为(为参数).
直线的直角坐标方程为.
(Ⅱ)由直线的方程可得点,点.
设点,则 .
.
由(Ⅰ)知,则 .
因为,所以.
【题型】解答题
【结束】
23
【题目】选修4-5:不等式选讲
已知函数, .
(Ⅰ)若对于任意, 都满足,求的值;
(Ⅱ)若存在,使得成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校高三课外兴趣小组为了解高三同学高考结束后是否打算观看2018年足球世界杯比赛的情况,从全校高三年级1500名男生、1000名女生中按分层抽样的方式抽取125名学生进行问卷调查,情况如下表:
打算观看 | 不打算观看 | |
女生 | 20 | b |
男生 | c | 25 |
(1)求出表中数据b,c;
(2)判断是否有99%的把握认为观看2018年足球世界杯比赛与性别有关;
(3)为了计算“从10人中选出9人参加比赛”的情况有多少种,我们可以发现它与“从10人中选出1人不参加比赛”的情况有多少种是一致的.现有问题:在打算观看2018年足球世界杯比赛的同学中有5名男生、2名女生来自高三(5)班,从中推选5人接受校园电视台采访,请根据上述方法,求被推选出的5人中恰有四名男生、一名女生的概率.
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 |
K0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
附:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2015·浙江卷)已知数列{an}满足a1=且an+1=an- (n∈N*).
(1)证明:1≤≤2(n∈N*);
(2)设数列{ }的前n项和为Sn,证明: (n∈N*).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数是偶函数,且满足,当时, ,当时, 的最大值为.
(1)求实数的值;
(2)函数,若对任意的,总存在,使不等式恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的左、右焦点分别为, ,且离心率为, 为椭圆上任意一点,当时, 的面积为1.
(1)求椭圆的方程;
(2)已知点是椭圆上异于椭圆顶点的一点,延长直线, 分别与椭圆交于点, ,设直线的斜率为,直线的斜率为,求证: 为定值.
【答案】(1);(2)
【解析】试题分析:(1)设由题,由此求出,可得椭圆的方程;
(2)设, ,
当直线的斜率不存在时,可得;
当直线的斜率不存在时,同理可得.
当直线、的斜率存在时,,
设直线的方程为,则由消去通过运算可得
,同理可得,由此得到直线的斜率为,
直线的斜率为,进而可得.
试题解析:(1)设由题,
解得,则,
椭圆的方程为.
(2)设, ,
当直线的斜率不存在时,设,则,
直线的方程为代入,可得,
, ,则,
直线的斜率为,直线的斜率为,
,
当直线的斜率不存在时,同理可得.
当直线、的斜率存在时,,
设直线的方程为,则由消去可得:
,
又,则,代入上述方程可得
,
,则
,
设直线的方程为,同理可得,
直线的斜率为,
直线的斜率为,
.
所以,直线与的斜率之积为定值,即.
【题型】解答题
【结束】
21
【题目】已知函数, ,在处的切线方程为.
(1)求, ;
(2)若,证明: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某射击运动员进行射击训练,前三次射击在靶上的着弹点刚好是边长为的等边三角形的三个顶点.
(Ⅰ)第四次射击时,该运动员瞄准区域射击(不会打到外),则此次射击的着弹点距的距离都超过的概率为多少?(弹孔大小忽略不计)
(Ⅱ) 该运动员前三次射击的成绩(环数)都在区间内,调整一下后,又连打三枪,其成绩(环数)都在区间内.现从这次射击成绩中随机抽取两次射击的成绩(记为和)进行技术分析.求事件“”的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com