精英家教网 > 高中数学 > 题目详情

【题目】数列{an}是等差数列,a1=fx+1),a2=0a3=fx-1),其中fx=x2-4x+2

1)求通项公式an

2)若数列{an}为递增数列,令bn=an+1+an+2+an+3+an+4,求数列{}的前n项和Sn

【答案】(1)当x=1时,an =2n-4,当x=3时, an=4-2n;;(2)

【解析】

1)题目给出了一个等差数列的前3项,根据等差中项概念列式a1+a3=2a2,然后把a1a3代入得到关于x的方程,解方程,求出x后再分别代回a1=fx+1)求a1,则d也可求,所以通项公式可求.

2)利用数列是递增数列求出通项公式,化简数列的通项公式,通过裂项消项法求解数列的和即可.

解:(1)数列{an}为等差数列,所以a1+a3=2a2

fx+1+fx-1=0,又fx=x2-4x+2

所以(x+12-4x+1+2+x-12-4x-1+2=0,整理得x2-4x+3=0,解得x=1x=3

x=1时,a1=fx+1=f2=22-4×2+2=-2d=a2-a1=0--2=2

an=a1+n-1d=-2+2n-1=2n-4

x=3时,a1=fx+1=f4=42-4×4+2=2d=0-2=-2.所以an=4-2n

综上:当x=1时,an =2n-4;当x=3时, an=4-2n

2)数列{an}为递增数列,d0

所以数列{an}的通项公式为an=2n-4

bn=an+1+an+2+an+3+an+4=8n+4

==

数列{}的前n项和Sn==

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,圆的普通方程为. 在以坐标原点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为 .

(Ⅰ) 写出圆 的参数方程和直线的直角坐标方程;

( Ⅱ ) 设直线轴和轴的交点分别为为圆上的任意一点,求的取值范围.

【答案】(1);.

(2).

【解析】试题分析】(I)利用圆心和半径,写出圆的参数方程,将圆的极坐标方程展开后化简得直角坐标方程.(II)求得两点的坐标, 设点,代入向量,利用三角函数的值域来求得取值范围.

试题解析】

(Ⅰ)圆的参数方程为为参数).

直线的直角坐标方程为.

(Ⅱ)由直线的方程可得点,点.

设点,则 .

.

由(Ⅰ)知,则 .

因为,所以.

型】解答
束】
23

【题目】选修4-5:不等式选讲

已知函数 .

(Ⅰ)若对于任意 都满足,求的值;

(Ⅱ)若存在,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三课外兴趣小组为了解高三同学高考结束后是否打算观看2018年足球世界杯比赛的情况,从全校高三年级1500名男生、1000名女生中按分层抽样的方式抽取125名学生进行问卷调查,情况如下表:

打算观看

不打算观看

女生

20

b

男生

c

25

1)求出表中数据bc;

2)判断是否有99%的把握认为观看2018年足球世界杯比赛与性别有关;

3)为了计算10人中选出9人参加比赛的情况有多少种,我们可以发现它与10人中选出1人不参加比赛的情况有多少种是一致的.现有问题:在打算观看2018年足球世界杯比赛的同学中有5名男生、2名女生来自高三(5)班,从中推选5人接受校园电视台采访,请根据上述方法,求被推选出的5人中恰有四名男生、一名女生的概率.

P(K2≥k0)

0.10

0.05

0.025

0.01

0.005

K0

2.706

3.841

5.024

6.635

7.879

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·浙江卷)已知数列{an}满足a1an1=an (nN*).

(1)证明:1≤≤2(nN*)

(2)设数列{ }的前n项和为Sn,证明: (nN*).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数恰有两个不同的零点,则实数的取值范围为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间;

(2)设函数 为自然对数的底数.当时,若 ,不等式成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是偶函数,且满足,当时, ,当时, 的最大值为.

(1)求实数的值;

(2)函数,若对任意的,总存在,使不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左、右焦点分别为 ,且离心率为 为椭圆上任意一点,当时, 的面积为1.

(1)求椭圆的方程;

(2)已知点是椭圆上异于椭圆顶点的一点,延长直线 分别与椭圆交于点 ,设直线的斜率为,直线的斜率为,求证: 为定值.

【答案】(1);(2)

【解析】试题分析:(1)设由题,由此求出,可得椭圆的方程;

(2)设

当直线的斜率不存在时,可得

当直线的斜率不存在时,同理可得.

当直线的斜率存在时,

设直线的方程为,则由消去通过运算可得

,同理可得,由此得到直线的斜率为

直线的斜率为,进而可得.

试题解析:(1)设由题

解得,则

椭圆的方程为.

(2)设

当直线的斜率不存在时,设,则

直线的方程为代入,可得

,则

直线的斜率为,直线的斜率为

当直线的斜率不存在时,同理可得.

当直线的斜率存在时,

设直线的方程为,则由消去可得:

,则,代入上述方程可得

,则

设直线的方程为,同理可得

直线的斜率为

直线的斜率为

.

所以,直线的斜率之积为定值,即.

型】解答
束】
21

【题目】已知函数 ,在处的切线方程为.

(1)求

(2)若,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某射击运动员进行射击训练,前三次射击在靶上的着弹点刚好是边长为的等边三角形的三个顶点.

(Ⅰ)第四次射击时,该运动员瞄准区域射击(不会打到外),则此次射击的着弹点距的距离都超过的概率为多少?(弹孔大小忽略不计)

(Ⅱ) 该运动员前三次射击的成绩(环数)都在区间内,调整一下后,又连打三枪,其成绩(环数)都在区间内.现从这次射击成绩中随机抽取两次射击的成绩(记为)进行技术分析.求事件“”的概率.

查看答案和解析>>

同步练习册答案