精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,已知直线l的参数方程为 (t为参数,0<α<π),以原点O为极点,以x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ= (p>0).
(Ⅰ)写出直线l的极坐标方程和曲线C的直角坐标方程;
(Ⅱ)若直线l与曲线C相交于A,B两点,求 + 的值.

【答案】解:(I)由 ,∴直线l的普通方程为 =0,即sinαx﹣cosαy=0. 把x=ρcosθ,y=ρsinθ代入普通方程得sinαρcosθ﹣cosαρsinθ=0.
∵ρ= ,∴p=ρ﹣ρcosθ=ρ﹣x,∴ρ=p+x,两边平方得ρ2=x2+2px+p2 , ∴x2+y2=x2+2px+p2 , 即y2﹣2px﹣p2=0.
(II)联立方程组 ,解得
∴|OA|2=( 2+( 2= ,|OB|2=( 2+( 2=
∴|OA|= ,|OB|=
+ = + = + )=
【解析】(1)分别用x,y表示t,消去参数得到普通方程,再化为极坐标方程;(2)联立方程组解出A,B坐标,代入两点间的距离公式得出|OA|,|OB|,再进行化简计算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知 .

1)若的充分不必要条件,求实数的取值范围;

(2)若为真命题,“”为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx+ax2+(2a+1)x.(12分)
(1)讨论f(x)的单调性;
(2)当a<0时,证明f(x)≤﹣ ﹣2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}满足a1+3a2+…+(2n﹣1)an=2n.(12分)
(1)求{an}的通项公式;
(2)求数列{ }的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,底面ABCD是边长为2的菱形,∠ABC=60°,PA⊥PB,PC=2.
(1)求证:平面PAB⊥平面ABCD;
(2)若PA=PB,求二面角A﹣PC﹣D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在直角梯形中,ABCD,且.现以为一边向梯形外作正方形,然后沿边将正方形翻折,使平面与平面垂直,如图2.

(Ⅰ)求证:BC⊥平面DBE

(Ⅱ)求点D到平面BEC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设定义在(0,+∞)上的函数f(x)满足xf′(x)﹣f(x)=xlnx,f( )= ,则f(x)(
A.有极大值,无极小值
B.有极小值,无极大值
C.既有极大值,又有极小值
D.既无极大值,也无极小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中x轴的正半轴重合,若曲线C的参数方程为 (α是参数),直线l的极坐标方程为 ρsin(θ﹣ )=1.
(1)将曲线C的参数方程化为极坐标方程;
(2)由直线l上一点向曲线C引切线,求切线长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(x+ ),x∈R,且f( )=
(1)求A的值;
(2)若f(θ)+f(﹣θ)= ,θ∈(0, ),求f( ﹣θ).

查看答案和解析>>

同步练习册答案