精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)在(﹣1,+∞)上单调,且函数y=f(x﹣2)的图象关于x=1对称,若数列{an}是公差不为0的等差数列,且f(a50)=f(a51),则{an}的前100项的和为(
A.﹣200
B.﹣100
C.0
D.﹣50

【答案】B
【解析】解:函数f(x)在(﹣1,+∞)上单调,且函数y=f(x﹣2)的图象关于x=1对称, 可得y=f(x)的图象关于x=﹣1对称,
由数列{an}是公差不为0的等差数列,且f(a50)=f(a51),
可得a50+a51=﹣2,又{an}是等差数列,
所以a1+a100=a50+a51=﹣2,
则{an}的前100项的和为 =﹣100
故选:B.
【考点精析】利用函数单调性的性质和等差数列的前n项和公式对题目进行判断即可得到答案,需要熟知函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集;前n项和公式:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知过点A(0,1)且斜率为k的直线l与圆C:(x﹣2)2+(y﹣3)2=1交于点M、N两点.
(1)求k的取值范围;
(2)若 =12,其中O为坐标原点,求|MN|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某服务电话,打进的电话响第1声时被接的概率是0.1;响第2声时被接的概率是0.2;响第3声时被接的概率是0.3;响第4声时被接的概率是0.35.

(1)打进的电话在响5声之前被接的概率是多少?

(2)打进的电话响4声而不被接的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班从6名干部中(其中男生4人,女生2人)选3人参加学校的义务劳动.
(1)设所选3人中女生人数为ξ,求ξ的分布列及Eξ;
(2)求男生甲或女生乙被选中的概率;
(3)在男生甲被选中的情况下,求女生乙也被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一支车队有辆车,某天依次出发执行运输任务。第一辆车于下午时出发,第二辆车于下午分出发,第三辆车于下午分出发,以此类推。假设所有的司机都连续开车,并都在下午时停下来休息.

到下午时,最后一辆车行驶了多长时间?

如果每辆车的行驶速度都是,这个车队当天一共行驶了多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)已知的两个零点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,记.

1)求曲线处的切线方程;

2)求函数的单调区间;

3)当时,若函数没有零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数)在处取得极值.

(1)求的单调区间;

(2)讨论的零点个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种产品的质量以其质量指标值衡量,并依据质量指标值划分等极如下表:

质量指标值m

m<185

185≤m<205

m≥205

等级

三等品

二等品

一等品

从某企业生产的这种产品中抽取200件,检测后得到如下的频率分布直方图:

(Ⅰ)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“一、二等品至少要占全部产品90%”的规定?
(Ⅱ)在样本中,按产品等极用分层抽样的方法抽取8件,再从这8件产品中随机抽取4件,求抽取的4件产品中,一、二、三等品都有的概率;
(III)该企业为提高产品质量,开展了“质量提升月”活动,活动后再抽样检测,产品质量指标值X近似满足X~N(218,140}),则“质量提升月”活动后的质量指标值的均值比活动前大约提升了多少?

查看答案和解析>>

同步练习册答案