精英家教网 > 高中数学 > 题目详情

如图所示,AD、CE是△ABC中边BC、AB的高,AD和CE相交于点F.

求证:AF·FD=CF·FE.

见解析

解析证明 因为AD⊥BC,CE⊥AB,
所以△AFE和△CFD都是直角三角形.
又因为∠AFE=∠CFD,所以Rt△AFE∽Rt△CFD.
所以AF∶FE=CF∶FD.
所以AF·FD=CF·FE.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,已知点在圆直径的延长线上,切圆点,的平分线交于点,交点.

(1)求的度数;(2)若,求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,AB为⊙O的直径,直线CD与⊙O相切于E,AD垂直CD于D,BC垂直CD于C,EF垂直AB于F,连接AE,BE.证明:

(1)∠FEB=∠CEB;
(2)EF2=AD·BC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,AB为⊙O的直径,AE平分∠BAC交⊙O于E点,过E作⊙O的切线交AC于点D,试判断△AED的形状,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知在⊙O中,P是弦AB的中点,过点P作半径OA的垂线,垂足是点E.分别交⊙O于C、D两点.

求证:PC·PD=AE·AO.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

试说明矩形的四个顶点在以对角线的交点为圆心的同一个圆上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在?ABCD中,设E和F分别是边BC和AD的中点,BF和DE分别交AC于P、Q两点.

求证:AP=PQ=QC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,内接于上,于点E,点F在DA的延长线上,,求证:

(1)的切线;
(2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在中,的角平分线,的外接圆交.

(1)求证:
(2)当时,求的长.

查看答案和解析>>

同步练习册答案