精英家教网 > 高中数学 > 题目详情

【题目】已知函数的两个极值点为,且.

(1)求的值;

(2)若(其中上是单调函数, 的取值范围;

(3)当时, 求证:.

【答案】(1)(2)(3)详见解析

【解析】

试题分析:(1)由极值定义得得两根为,由韦达定理得,解得,再根据二次方程求根公式得(2)由(1)可得函数有三个单调区间,,所以为单调区间的一个子集,即(3)利用不等式乘积性质证明不等式:利用导数可得先将后增,有最小值所以;根据二次函数最值得,由于两个不等式中等号取法不一致,所以乘积中等号取不到

试题解析:(1)

,

.

(2)由(1)知, 上递减, 上递增, 其中,

上递减时,, ,当 上递增时,, 综上, 的取值范围为.

(3)证明: ,则,令,得;令,得.,(当时取等号),

不等式成立(因为取等条件不相同, 所以等号取不到).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数据是杭州市100个普通职工的2016年10月份的收入均不超过2万元,设这100个数据的中位数为平均数为方差为如果再加上马云2016年10月份的收入约100亿元,则相对于101个月收入数据

A.平均数可能不变,中位数可能不变,方差可能不变

B.平均数大大增大,中位数可能不变,方差也不变

C.平均数大大增大,中位数一定变大,方差可能不变

D.平均数大大增大,中位数可能不变,方差变大

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】春节期间某超市搞促销活动,当顾客购买商品的金额达到一定数量后可以参加抽奖活动,活动规则为:从装有个黑球, 个红球, 个白球的箱子中(除颜色外,球完全相同)摸球.

(Ⅰ)当顾客购买金额超过元而不超过元时,可从箱子中一次性摸出个小球,每摸出一个黑球奖励元的现金,每摸出一个红球奖励元的现金,每摸出一个白球奖励元的现金,求奖金数不少于元的概率;

(Ⅱ)当购买金额超过元时,可从箱子中摸两次,每次摸出个小球后,放回再摸一次,每摸出一个黑球和白球一样奖励元的现金,每摸出一个红球奖励元的现金,求奖金数小于元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中央电视台电视公开课《开讲了》需要现场观众,先邀请甲、乙、丙、丁四所大学的40名学生参加,各大学邀请的学生如下表所示:

大学

人数

8

12

8

12

从这40名学生中按分层抽样的方式抽取10名学生在第一排发言席就座

1求各大学抽取的人数;

21中抽取的乙大学和丁大学的学生中随机选出2名学生发言,求这2名学生来自同一所大学的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的定义域为,若存在闭区间[m,n] D,使得函数满足:①[m,n]上是单调函数;②[m,n]上的值域为[2m,2n],则称区间[m,n]的“倍值区间”下列函数中存在“倍值区间”的 .(填上所有正确的序号

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA=4,D是AB的中点

(1)求证:ACBC

(2)求证:AC//平面CDB

(3)求二面角B-DC-B1的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 上单调递增,

(1)若函数有实数零点,求满足条件的实数的集合

(2)若对于任意的时,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知, 对边分别为,已知.

1)若的面积等于,求

2)若,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表提供了某公司技术升级后生产产品过程中记录的产量(吨)与相应的成本(万元)的几组对照数据:

(1)请画出上表数据的散点图;

(2)请根据上表提供的数据,用最小二乘法求出的回归直线方程;

(3)已知该公司技术升级前生产100吨产品的成本为90万元.试根据(2)求出的回归直线方程,预测技术升级后生产100吨产品的成本比技术升级前约降低多少万元?

(附: ,其中为样本平均值)

查看答案和解析>>

同步练习册答案