精英家教网 > 高中数学 > 题目详情

【题目】设椭圆的左、右焦点分别为,下顶点为,椭圆的离心率是的面积是.

1)求椭圆的标准方程.

2)直线与椭圆交于两点(异于点),若直线与直线的斜率之和为1,证明:直线恒过定点,并求出该定点的坐标.

【答案】1 2)证明见解析,.

【解析】

1)根据离心率和的面积是得到方程组,计算得到答案.

2)先排除斜率为0时的情况,设,联立方程组利用韦达定理得到,根据化简得到,代入直线方程得到答案.

1)由题意可得,解得,则椭圆的标准方程是.

2)当直线的斜率为0时,直线与直线关于轴对称,则直线与直线的斜率之和为零,与题设条件矛盾,故直线的斜率不为0.

,直线的方程为

联立,整理得

.

因为直线与直线的斜率之和为1,所以

所以

代入上式,整理得.

所以,即

则直线的方程为.

故直线恒过定点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,梯形与平行四边形所在平面互相垂直, .

(Ⅰ)求证:平面

(Ⅱ)求二面角的余弦值;

(Ⅲ)判断线段上是否存在点,使得平面平面?若存在,求 出的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求使方程存在两个实数解时,的取值范围;

2)设,函数.若对任意,总存在,使得,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据某水文观测点的历史统计数据,得到某河流水位(单位:米)的频率分布直方图如下.将河流水位在各段内的频率作为相应段的概率,并假设每年河流水位变化互不影响.

1)求未来4年中,至少有2年该河流水位的概率(结果用分数表示).

2)已知该河流对沿河工厂的影响如下:当时,不会造成影响;当时,损失50000元;当时,损失300000.为减少损失,工厂制定了三种应对方案.

方案一:不采取措施;

方案二:防御不超过30米的水位,需要工程费用8000元;

方案三:防御34米的最高水位,需要工程费用20000.

试问哪种方案更好,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示单位:cm,四边形ABCD是直角梯形,求图中阴影部分绕AB旋转一周所成几何体的表面积和体积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体中,点E是棱的中点,点F是线段上的一个动点.有以下三个命题:

①异面直线所成的角是定值;

②三棱锥的体积是定值;

③直线与平面所成的角是定值.

其中真命题的个数是( )

A. 3 B. 2 C. 1 D. 0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(I)求函数的对称轴方程;

(II)将函数的图象上各点的纵坐标保持不变,横坐标伸长为原来的2倍,然后再向左平移个单位,得到函数的图象.若分别是△ABC三个内角ABC的对边,a=2,c=4,且,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆分别为其左、右焦点,过的直线与此椭圆相交于两点,且的周长为8,椭圆的离心率为

(Ⅰ)求椭圆的方程;

(Ⅱ)在平面直角坐标系中,已知点与点,过的动直线(不与轴平行)与椭圆相交于两点,点是点关于轴的对称点.求证:

i三点共线.

ii

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图为陕西博物馆收藏的国宝——·金筐宝钿团花纹金杯,杯身曲线内收,玲珑娇美,巧夺天工,是唐代金银细作的典范之作.该杯型几何体的主体部分可近似看作是双曲线的右支与直线,,围成的曲边四边形轴旋转一周得到的几何体,如图分别为的渐近线与,的交点,曲边五边形轴旋转一周得到的几何体的体积可由祖恒原理(祖恒原理:幂势既同,则积不容异).意思是:两等高的几何体在同高处被截得的两截面面积均相等,那么这两个几何体的体积相等,那么这两个几何体的体积相等),据此求得该金杯的容积是_____.(杯壁厚度忽略不计)

查看答案和解析>>

同步练习册答案