精英家教网 > 高中数学 > 题目详情

【题目】如图,在平面直角坐标系中,已知椭圆过点 分别为椭圆的右、下顶点,且

(1)求椭圆的方程;

(2)设点在椭圆内,满足直线 的斜率乘积为,且直线 分别交椭圆于点

(i) 若 关于轴对称,求直线的斜率;

(ii) 求证: 的面积与的面积相等.

【答案】(1). (2)(i) ;(ii) 见解析.

【解析】试题分析:

(1)由题意求得,椭圆的方程为.

(2)(i)设出点的坐标和直线方程,联立直线与椭圆的方程,得到关于实数k的方程,解方程可得

(ii)利用题意证得,则的面积与的面积相等.

试题解析:

(1)由知,

又椭圆过点,所以

解得 所以椭圆的方程为

(2)设直线的斜率为,则直线的方程为

联立 消去并整理得,

解得 ,所以

因为直线 的斜率乘积为,所以直线的方程

联立 消去并整理得,

解得 ,所以

(i) 因为 关于轴对称,所以

,解得

时,点在椭圆外,不满足题意.

所以直线的斜率为

(ii) 联立 解得

所以

的面积与的面积相等.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设全集为R,集合A={x||x|≤2},B={x| >0},则A∩RB=(
A.[﹣2,1)
B.[﹣2,1]
C.[﹣2,2]
D.[﹣2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足: .

(1)求数列的通项公式;

(2)若,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,过左焦点F且垂直于x轴的直线与椭圆相交,所得弦长为1,斜率为 ()的直线过点,且与椭圆相交于不同的两点. 

(Ⅰ)求椭圆的方程;

(Ⅱ)在轴上是否存在点,使得无论取何值, 为定值?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某网络营销部门为了统计某市网友2016年12月12日的网购情况,从该市当天参与网购的顾客中随机抽查了男女各30人,统计其网购金额,得到如下频率分布直方图:

网购达人

非网购达人

合计

男性

30

女性

12

30

合计

60

若网购金额超过千元的顾客称为“网购达人”,网购金额不超过千元的顾客称为“非网购达人”.

(Ⅰ)若抽取的“网购达人”中女性占12人,请根据条件完成上面的列联表,并判断是否有99%的把握认为“网购达人”与性别有关?

(Ⅱ)该营销部门为了进一步了解这名网友的购物体验,从“非网购达人”、“网购达人”中用分层抽样的方法确定12人,若需从这12人中随机选取人进行问卷调查.设为选取的人中“网购达人”的人数,求的分布列和数学期望.

(参考公式: ,其中

P()

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,长方体ABCD﹣A1B1C1D1中,AA1=AB=2,AD=1点E,F,G分别是DD1 , AB,CC1的中点,则异面直线A1E与GF所成的角是(
A.90°
B.60°
C.45°
D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,角 的对边分别为 .已知

(1)求角的大小;

2)若 的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某服装厂生产一种服装,每件服装的成本为40元,出厂单价为60元,该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出厂单价就降低0.02元,根据市场调查,销售商一次订购量不会超过500件.
(1)设一次订购量为x件,服装的实际出厂单价为P元,写出函数P=f(x)的表达式;
(2)当销售商一次订购多少件服装时,该服装厂获得的利润最大?并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆 的离心率为,过右焦点垂直于轴的直线与椭圆交于 两点且,又过左焦点任作直线交椭圆于点

(Ⅰ)求椭圆的方程;

(Ⅱ)椭圆上两点 关于直线对称,求面积的最大值.

查看答案和解析>>

同步练习册答案