精英家教网 > 高中数学 > 题目详情

【题目】已知两直线l1:x+8y+7=0和l2:2x+y﹣1=0.
(1)求l1与l2交点坐标;
(2)求过l1与l2交点且与直线x+y+1=0平行的直线方程.

【答案】
(1)解:联立两条直线的方程可得:

解得x=1,y=﹣1

所以l1与l2交点坐标是(1,﹣1)


(2)解:设与直线x+y+1=0平行的直线l方程为x+y+c=0

因为直线l过l1与l2交点(1,﹣1)

所以c=0

所以直线l的方程为x+y=0


【解析】(1)联立两条直线的方程可得: ,解得x=1,y=﹣1.(2)设与直线x+y+1=0平行的直线l方程为x+y+c=0因为直线l过l1与l2交点(1,﹣1),所以c=0.
【考点精析】本题主要考查了点斜式方程的相关知识点,需要掌握直线的点斜式方程:直线经过点,且斜率为则:才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目.根据预测,甲、乙项目可能的最大盈利率分别为100%和50%,可能的最大亏损分别为30%和10%.投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元.问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别是焦距为的椭圆的左、右顶点, 为椭圆上非顶点的点,直线的斜率分别为,且.

(1)求椭圆的方程;

(2)直线(与轴不重合)过点且与椭圆交于两点,直线交于点,试求点的轨迹是否是垂直轴的直线,若是,则求出点的轨迹方程,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,平面平面,// ,,

,且.

1)求证:平面

2)求和平面所成角的正弦值;

3)在线段上是否存在一点使得平面平面,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解学生对“两个一百年”奋斗目标、实现中华民族伟大复兴中国梦的“关注度”(单位:天),某中学团委组织学生在十字路口采用随机抽样的方法抽取了80名青年学生(其中男女人数各占一半)进行问卷调查,并进行了统计,按男女分为两组,再将每组青年学生的月“关注度”分为6组: ,得到如图所示的频率分布直方图.

(1)求的值;

(2)现从“关注度”在的男生与女生中选取3人,设这3人来自男生的人数为,求的分布列与期望;

(3)在抽取的80名青年学生中,从月“关注度”不少于25天的人中随机抽取2人,求至少抽取到1名女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设双曲线的一个焦点为F,虚轴的一个端点为B,如果直线FB与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某金匠以黄金为原材料加工一种饰品,经多年的数据统计得知,该金匠平均每加5 个饰品中有4个成品和1个废品,每个成品可获利3万元,每个废品损失1万元,假设该金匠加工每件饰品互不影响,以频率估计概率.

(1)若金金匠加工4个饰品,求其中废品的数量不超过1的概率;

(2)若该金匠加工了 3个饰品,求他所获利润的数学期望.

(两小问的计算结果都用分数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆C: 的左焦点为F,过点F的直线与椭圆C相交于A,B两点,直线l的倾斜角为60°,

(1)求椭圆C的离心率;
(2)如果|AB|= ,求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)若函数的图象恰好相切与点,求实数 的值;

(2)当时, 恒成立,求实数的取值范围;

(3)求证: .

查看答案和解析>>

同步练习册答案