【题目】已知△ABC中,AB=AC,D为△ABC外接圆劣弧 上的点(不与点A,C重合),延长BD至E,延长AD交BC的延长线于F.
(1)求证:∠CDF=∠EDF;
(2)求证:ABACDF=ADFCFB.
【答案】
(1)证明:∵A,B,C,D 四点共圆,∴∠ABC=∠CDF
又AB=AC∴∠ABC=∠ACB,
且∠ADB=∠ACB,∴∠ADB=∠CDF,
对顶角∠EDF=∠ADB,故∠EDF=∠CDF;
(2)证明:由(I)得∠ADB=∠ABF,
∵∠BAD=∠FAB,
∴△BAD∽△FAB,
∴ = ,
∴AB2=ADAF,
∵AB=AC,
∴ABAC=ADAF,
∴ABACDF=ADAFDF,
根据割线定理DFAF=FCFB,
∴ABACDF=ADFCFB.
【解析】(I)根据A,B,C,D 四点共圆,可得∠ABC=∠CDF,AB=AC可得∠ABC=∠ACB,从而得解.(II)证明△BAD∽△FAB,可得AB2=ADAF,因为AB=AC,所以ABAC=ADAF,再根据割线定理即可得到结论.
科目:高中数学 来源: 题型:
【题目】传统文化就是文明演化而汇集成的一种反映民族特质和风貌的民族文化,是民族历史上各种思想文化、观念形态的总体表征.教育部考试中心确定了2017年普通高考部分学科更注重传统文化考核.某校为了了解高二年级中国数学传统文化选修课的教学效果,进行了一次阶段检测,并从中随机抽取80名同学的成绩,然后就其成绩分为A、B、C、D、E五个等级进行数据统计如下:
成绩 | 人数 |
A | 9 |
B | 12 |
C | 31 |
D | 22 |
E | 6 |
根据以上抽样调查数据,视频率为概率.
(1)若该校高二年级共有1000名学生,试估算该校高二年级学生获得成绩为B的人数;
(2)若等级A、B、C、D、E分别对应100分、80分、60分、40分、20分,学校要求“平均分达60分以上”为“教学达标”,请问该校高二年级此阶段教学是否达标?
(3)为更深入了解教学情况,将成绩等级为A、B的学生中,按分层抽样抽取7人,再从中任意抽取3名,求抽到成绩为A的人数X的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列 {an} 的前 n 项和为Sn , S1=6,S2=4,Sn>0且S2n , S2n﹣1 , S2n+2成等比数列,S2n﹣1 , S2n+2 , S2n+1成等差数列,则a2016等于( )
A.﹣1009
B.﹣1008
C.﹣1007
D.﹣1006
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】△ABC中,角A,B,C所对边分别是a、b、c,且cosA= .
(1)求sin2 +cos2A的值;
(2)若a= ,求△ABC面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=2cos2x+sin2x+a(a∈R).
(1)求函数f(x)的最小正周期和单调递增区间;
(2)当 时,f(x)的最大值为2,求a的值,并求出y=f(x)(x∈R)的对称轴方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数 ,为了得到函数g(x)=sin2x的图象,则只需将f(x)的图象( )
A.向右平移 个长度单位
B.向右平移 个长度单位
C.向左平移 个长度单位
D.向左平移 个长度单位
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设甲、乙两人每次射击命中目标的概率分别为 ,且各次射击相互独立,若按甲、乙、甲、乙…的次序轮流射击,直到有一人击中目标就停止射击,则停止射击时,甲射击了两次的概率是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com