精英家教网 > 高中数学 > 题目详情
5.函数f(x)=$\sqrt{lo{g}_{\frac{1}{2}}(x-1)-1}$的定义域为(0,$\frac{3}{2}$].

分析 利用开偶次方被开方数非负列出不等式,然后求解即可.

解答 解:函数f(x)=$\sqrt{lo{g}_{\frac{1}{2}}(x-1)-1}$有意义,
可得:$lo{g}_{\frac{1}{2}}(x-1)-1≥0$,可得0$≤x-1≤\frac{1}{2}$,
解得1$<x≤\frac{3}{2}$.
函数的定义域为:(0,$\frac{3}{2}$].
故答案为:(0,$\frac{3}{2}$].

点评 本题考查函数的定义域的求法,对数不等式的解法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.设椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交z轴负半轴于点Q,且$2\overrightarrow{{F_1}{F_2}}$+$\overrightarrow{{F_2}Q}$=$\overrightarrow{0}$,若过A,Q,F2三点的圆的半径为2.
(1)求椭圆C的方程;
(2)过右焦点F2作斜率为k的直线l与椭圆C交丁M、N两点,在x轴上存在点P(m,0)使得以PM,PN为邻边的平行四边形是菱形,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(1)设A={1,2,3},对于A的每个非空子集X,用S(x)表示X中各元素的积,求所有S(x)的积;
(2)给定n,令A(n)={a[a为质数,且a整除n},用列举法表示A(30).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知空间四边形OABC,其对角线为AC,OB,且M,N分别是OA,BC的中点,G为MN的中点,则$\overrightarrow{OG}$等于(  )
A.$\frac{1}{6}$$\overrightarrow{AB}$+$\frac{1}{3}\overrightarrow{OB}$+$\frac{1}{3}\overrightarrow{OC}$B.$\frac{1}{4}$($\overline{OA}+\overline{OB}+\overrightarrow{OC}$)C.$\frac{1}{3}$($\overline{OA}+\overline{OB}+\overrightarrow{OC}$)D.$\frac{1}{3}$$\overrightarrow{OA}+\frac{1}{6}\overrightarrow{OB}+\frac{1}{3}\overrightarrow{OC}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=-x3+x2,g(x)=alnx,a∈R.若对任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.A、B是抛物线y2=2px(p>0)上的两点,满足$\overrightarrow{OA}$•$\overrightarrow{OB}$=0(O是原点),求证:
(1)A、B两点的横坐标之积,纵坐标之积均为定值.
(2)直线AB过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知A={1,2,3,4},B={2,3,4,6},则A∩B=(  )
A.{1,2}B.{2,3}C.{2,3,4}D.{1,2,3,4,6}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知sinx+cosx=$\frac{4\sqrt{2}}{5}$,$\frac{π}{4}$<x<$\frac{π}{2}$,求下列各式的值:
(1)sinx•cosx;
(2)cosx-sinx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,内角A,B,C所对的边分别是a,b,c.已知acosB=bcosA,边BC上的中线长为4.
(Ⅰ)若$A=\frac{π}{6}$,求c;
(Ⅱ)求△ABC面积的最大值.

查看答案和解析>>

同步练习册答案