精英家教网 > 高中数学 > 题目详情

【题目】从1,2,3,4,5中随机取出两个不同的数,则其和为奇数的概率为

【答案】
【解析】解:方法一:从5个数字中随机抽取2个不同的数字共有C52=10种不同的抽取方法,而两数字和为奇数则必然一奇一偶,共有C31×C21=6种不同的抽取方法,
∴两个数的和为奇数的概率P= =
方法二(列举法),从1,2,3,4,5中随机取出两个不同的数,共有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)共10种,其中其和为奇数为(1,2),(1,4),(2,3),(2,5),(3,4),(4,5)共6种,
∴两个数的和为奇数的概率P= =
所以答案是:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】给出如下四个说法

已知pq都是命题,若pq为假命题,则pq均为假命题

命题a>b,则3a>3b-1”的否命题为ab,则3a≤3b-1”;

命题xR,x2+1≥0”的否定是x0R,+1<0”;

a≥0”x0R,a+x0+1≥0”的充分必要条件

其中正确说法的序号是 ( )

A. ①③ B. ②③ C. ②③④ D. ②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了普及环保知识,增强环保意识,某大学从理工类专业的A班和文史类专业的B班各抽取20名同学参加环保知识测试.统计得到成绩与专业的列联表如下所示:

优秀

非优秀

总计

A

14

6

20

B

7

13

20

总计

21

19

40

则下列说法正确的是 ( )

A. 有99%的把握认为环保知识测试成绩与专业有关

B. 有99%的把握认为环保知识测试成绩与专业无关

C. 有95%的把握认为环保知识测试成绩与专业有关

D. 有95%的把握认为环保知识测试成绩与专业无关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: (a>b>0)的离心率为,坐标原点O到直线x+y-b=0的距离为.

(1)求椭圆C的标准方程;

(2)设过椭圆C的右焦点F且倾斜角为45°的直线l与椭圆C交于A,B两点,对于椭圆C上一点M,若(λ>0,μ>0),求λμ的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知抛物线y2=2px(p>0)上一点P( ,m)到准线的距离与到原点O的距离相等,抛物线的焦点为F.
(1)求抛物线的方程;
(2)若A为抛物线上一点(异于原点O),点A处的切线交x轴于点B,过A作准线的垂线,垂足为点E.试判断四边形AEBF的形状,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场在国庆黄金周的促销活动中,对10月1日9时至14时的销售额进行统计,其频率分布直方图如图所示.已知9时至10时的销售额为3万元,则11时至12时的销售额为万元.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在区间(﹣∞,t]上存在x,使得不等式x2﹣4x+t≤0成立,则实数t的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修:4﹣2:矩阵与变换
若圆C:x2+y2=1在矩阵 (a>0,b>0)对应的变换下变成椭圆E: ,求矩阵A的逆矩阵A1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,圆C的方程为ρ=2acosθ(a≠0),以极点为坐标原点,极轴为x轴正半轴建立平面直角坐标系,设直线l的参数方程为 (t为参数).
(1)求圆C的直角坐标方程(化为标准方程)和直线l的极坐标方程;
(2)若直线l与圆C只有一个公共点,且a<1,求a的值.

查看答案和解析>>

同步练习册答案