£¨2012•º£µíÇøһģ£©ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬ÍÖÔ²GµÄÖÐÐÄΪ×ø±êÔ­µã£¬×ó½¹µãΪF1£¨-1£¬0£©£¬PΪÍÖÔ²GµÄÉ϶¥µã£¬ÇÒ¡ÏPF1O=45¡ã£®
£¨¢ñ£©ÇóÍÖÔ²GµÄ±ê×¼·½³Ì£»
£¨¢ò£©ÒÑÖªÖ±Ïßl1£ºy=kx+m1ÓëÍÖÔ²G½»ÓÚA£¬BÁ½µã£¬Ö±Ïßl2£ºy=kx+m2£¨m1¡Ùm2£©ÓëÍÖÔ²G½»ÓÚC£¬DÁ½µã£¬ÇÒ|AB|=|CD|£¬ÈçͼËùʾ£®£¨¢¡£©Ö¤Ã÷£ºm1+m2=0£»£¨¢¢£©ÇóËıßÐÎABCDµÄÃæ»ýSµÄ×î´óÖµ£®
·ÖÎö£º£¨¢ñ£©¸ù¾ÝF1£¨-1£¬0£©£¬¡ÏPF1O=45¡ã£¬¿ÉµÃb=c=1£¬´Ó¶øa2=b2+c2=2£¬¹Ê¿ÉµÃÍÖÔ²GµÄ±ê×¼·½³Ì£»
£¨¢ò£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬C£¨x3£¬y3£©£¬D£¨x4£¬y4£©£®
£¨¢¡£©Ö±Ïßl1£ºy=kx+m1ÓëÍÖÔ²GÁªÁ¢£¬ÀûÓÃΤ´ï¶¨Àí£¬¿ÉÇóAB£¬CDµÄ³¤£¬ÀûÓÃ|AB|=|CD|£¬¿ÉµÃ½áÂÛ£»
£¨¢¢£©Çó³öÁ½Æ½ÐÐÏßAB£¬CD¼äµÄ¾àÀëΪd£¬Ôò d=
|m1-m2|
1+k2
£¬±íʾ³öËıßÐÎABCDµÄÃæ»ýS£¬ÀûÓûù±¾²»µÈʽ£¬¼´¿ÉÇóµÃËıßÐÎABCDµÄÃæ»ýSÈ¡µÃ×î´óÖµ£®
½â´ð£º£¨¢ñ£©½â£ºÉèÍÖÔ²GµÄ±ê×¼·½³ÌΪ
x2
a2
+
y2
b2
=1(a£¾b£¾0)
£®
ÒòΪF1£¨-1£¬0£©£¬¡ÏPF1O=45¡ã£¬ËùÒÔb=c=1£®
ËùÒÔ£¬a2=b2+c2=2£®¡­£¨2·Ö£©
ËùÒÔ£¬ÍÖÔ²GµÄ±ê×¼·½³ÌΪ
x2
2
+y2=1
£®¡­£¨3·Ö£©
£¨¢ò£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬C£¨x3£¬y3£©£¬D£¨x4£¬y4£©£®
£¨¢¡£©Ö¤Ã÷£ºÓÉ
y=kx+m1
x2
2
+y2=1.
ÏûÈ¥yµÃ£º(1+2k2)x2+4km1x+2
m
2
1
-2=0
£®
Ôò¡÷=8(2k2-
m
2
1
+1)£¾0
£¬
x1+x2=-
4km1
1+2k2
x1x2=
2
m
2
1
-2
1+2k2
.
¡­£¨5·Ö£©
ËùÒÔ |AB|=
(x1-x2)2+(y1-y2)2
=
1+k2
(x1+x2)2-4x1x2
=
1+k2
(-
4km1
1+2k2
)
2
-4•
2
m
2
1
-2
1+2k2
=2
2
1+k2
2k2-
m
2
1
+1
1+2k2
£®
ͬÀí |CD|=2
2
1+k2
2k2-
m
2
2
+1
1+2k2
£®¡­£¨7·Ö£©
ÒòΪ|AB|=|CD|£¬
ËùÒÔ 2
2
1+k2
2k2-
m
2
1
+1
1+2k2
=2
2
1+k2
2k2-
m
2
2
+1
1+2k2
£®
ÒòΪ m1¡Ùm2£¬ËùÒÔm1+m2=0£®¡­£¨9·Ö£©
£¨¢¢£©½â£ºÓÉÌâÒâµÃËıßÐÎABCDÊÇƽÐÐËıßÐΣ¬ÉèÁ½Æ½ÐÐÏßAB£¬CD¼äµÄ¾àÀëΪd£¬Ôò d=
|m1-m2|
1+k2
£®ÒòΪ m1+m2=0£¬ËùÒÔ d=
|2m1|
1+k2
£®¡­£¨10·Ö£©
ËùÒÔ S=|AB|•d=2
2
1+k2
2k2-
m
2
1
+1
1+2k2
|2m1|
1+k2
=4
2
(2k2-
m
2
1
+1)
m
2
1
1+2k2
¡Ü4
2
2k2-
m
2
1
+1+
m
2
1
2
1+2k2
=2
2
£®
£¨»òS=4
2
(2k2+1)
m
2
1
-
m
4
1
(1+2k2)2
=4
2
-(
m
2
1
1+2k2
-
1
2
)
2
+
1
4
¡Ü2
2
£©
ËùÒÔ µ±2k2+1=2
m
2
1
ʱ£¬ËıßÐÎABCDµÄÃæ»ýSÈ¡µÃ×î´óֵΪ2
2
£®¡­£¨12·Ö£©
µãÆÀ£º±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØϵ£¬¿¼²éÏÒ³¤µÄ¼ÆË㣬¿¼²éÈý½ÇÐεÄÃæ»ý£¬Í¬Ê±¿¼²éÀûÓûù±¾²»µÈʽÇó×îÖµ£¬ÕýÈ·ÇóÏÒ³¤£¬±íʾ³öËıßÐεÄÃæ»ýÊǽâÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•º£µíÇøһģ£©Ö´ÐÐÈçͼËùʾµÄ³ÌÐò¿òͼ£¬Êä³öµÄkÖµÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•º£µíÇøһģ£©´Ó¼×¡¢ÒÒµÈ5¸öÈËÖÐÑ¡³ö3ÈËÅųÉÒ»ÁУ¬Ôò¼×²»ÔÚÅÅÍ·µÄÅÅ·¨ÖÖÊýÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•º£µíÇøһģ£©Ä³Ñ§Ð£Ëæ»ú³éÈ¡²¿·ÖÐÂÉúµ÷²éÆäÉÏѧËùÐèʱ¼ä£¨µ¥Î»£º·ÖÖÓ£©£¬²¢½«ËùµÃÊý¾Ý»æÖƳÉƵÂÊ·Ö²¼Ö±·½Í¼£¨Èçͼ£©£¬ÆäÖУ¬ÉÏѧËùÐèʱ¼äµÄ·¶Î§ÊÇ[0£¬100]£¬Ñù±¾Êý¾Ý·Ö×éΪ[0£¬20£©£¬[20£¬40£©£¬[40£¬60£©£¬[60£¬80£©£¬[80£¬100]£®
£¨¢ñ£©ÇóÖ±·½Í¼ÖÐxµÄÖµ£»
£¨¢ò£©Èç¹ûÉÏѧËùÐèʱ¼ä²»ÉÙÓÚ1СʱµÄѧÉú¿ÉÉêÇëÔÚѧУסËÞ£¬Çë¹À¼ÆѧУ600ÃûÐÂÉúÖÐÓжàÉÙÃûѧÉú¿ÉÒÔÉêÇëסËÞ£»
£¨¢ó£©´ÓѧУµÄÐÂÉúÖÐÈÎÑ¡4ÃûѧÉú£¬Õâ4ÃûѧÉúÖÐÉÏѧËùÐèʱ¼äÉÙÓÚ20·ÖÖÓµÄÈËÊý¼ÇΪX£¬ÇóXµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®£¨ÒÔÖ±·½Í¼ÖÐÐÂÉúÉÏѧËùÐèʱ¼äÉÙÓÚ20·ÖÖÓµÄƵÂÊ×÷ΪÿÃûѧÉúÉÏѧËùÐèʱ¼äÉÙÓÚ20·ÖÖӵĸÅÂÊ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•º£µíÇøһģ£©¹ýË«ÇúÏß
x2
9
-
y2
16
=1
µÄÓÒ½¹µã£¬ÇÒƽÐÐÓÚ¾­¹ýÒ»¡¢ÈýÏóÏ޵Ľ¥½üÏßµÄÖ±Ïß·½³ÌÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•º£µíÇøһģ£©¸´Êý
a+2i1-i
ÔÚ¸´Æ½ÃæÄÚËù¶ÔÓ¦µÄµãÔÚÐéÖáÉÏ£¬ÄÇôʵÊýa=
2
2
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸