【题目】如图所示,在四棱锥中,是正方形,平面, ,分别是的中点.
(1)求证:平面平面;
(2)证明平面平面,并求出到平面的距离.
科目:高中数学 来源: 题型:
【题目】退休年龄延迟是平均预期寿命延长和人口老龄化背景下的一种趋势.某机构为了解某城市市民的年龄构成,按的比例从年龄在20~80岁(含20岁和80岁)之间的市民中随机抽取600人进行调查,并将年龄按进行分组,绘制成频率分布直方图,如图所示.规定年龄在岁的人为“青年人”,岁的人为“中年人”, 岁的人为“老年人”.
(Ⅰ)根据频率分布直方图估计该城市60岁以上(含60岁)的人数,若每一组中的数据用该组区间的中点值来代表,试估算所调查的600人的平均年龄;
(Ⅱ)将上述人口分布的频率视为该城市年龄在20~80岁的人口分布的概率,从该城市年龄在20~80岁的市民中随机抽取3人,记抽到“老年人”的人数为,求随机变量的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列命题:
①已知,“且”是“”的充分条件;
②已知平面向量,“”是“”的必要不充分条件;
③已知,“”是“”的充分不必要条件;
④命题:“,使且”的否定为:“,都有且”.其中正确命题的个数是( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市举办数学知识竞赛活动,共5000名学生参加,竞赛分为初试和复试,复试环节共3道题,其中2道单选题,1道多选题,得分规则如下:参赛学生每答对一道单选题得2分,答错得O分,答对多选题得3分,答错得0分,答完3道题后的得分之和为参赛学生的复试成绩.
(1)通过分析可以认为学生初试成绩服从正态分布,其中,,试估计初试成绩不低于90分的人数;
(2)已知小强已通过初试,他在复试中单选题的正答率为,多选题的正答率为,且每道题回答正确与否互不影响.记小强复试成绩为,求的分布列及数学期望.
附:,,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“剪刀、石头、布”的游戏规则是:双方齐喊口令,然后同时出拳,握紧的拳头代表“石头”,“食指和中指伸出代表“剪刀”,五指伸开代表“布”。“ 石头”胜“剪刀”, “剪刀”胜“布”, “布”胜“石头”,若所出拳相同则为和局。现甲乙两人通过“剪刀、石头、布”进行比赛。
(1)设甲乙两人每局都随机出“剪刀”、“石头”、“布”中的某一个,求甲胜乙的概率;
(2)最近中国科学家在网上发布了“剪刀、石头、布”的致胜策略,引起了甲的关注,据甲认真观察,乙有以下出拳习惯:①第一局不出“剪刀”; ②连续两局的出拳一定不一样,即如本局出“剪刀”,则下局出“石头”、“布”中的一个。假设甲的分析是正确的,甲据此分析出拳,保证每局都不输给乙,在最多5局的比赛中,谁胜的局数多,谁获胜。游戏结束的条件是:一方胜3局或赛满5局,用表示游戏结束时的游戏局数,求的分布列和期望。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数, ,
(1)若,且在其定义域上存在单调递减区间,求实数的取值范围;
(2)设函数, ,若恒成立,求实数的取值范围;
(3)设函数的图象与函数的图象交于点、,过线段的中点作轴的垂线分别交, 于点、,证明: 在点处的切线与在点处的切线不平行.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学为了加强学生数学核心素养的培养,锻炼学生自主探究的学习能力,他们以函数为基本素材研究该函数的相关性质,某研究小组6位同学取得部分研究成果如下:
①同学甲发现:函数的零点为;
②同学乙发现:函数是奇函数;
③同学丙发现:对于任意的都有;
④同学丁发现:对于任意的,都有;
⑤同学戊发现:对于函数定义域中任意的两个不同实数,,总满足;
⑥同学己发现:求使的x的取值范围是.
其中正确结论的序号为________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com