精英家教网 > 高中数学 > 题目详情
已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的离心率e=
2
3
3
,直线l过A(a,0),B(0,-b)两点,原点O到直线l的距离是
3
2

(1)求双曲线的方程;
(2)过点B作直线m交双曲线于M、N两点,若
OM
ON
=-23,求直线m的方程.
分析:(1)先求出直线l的方程,再点到直线的距离公式建立关于a,b,c的方程,解这个方程求出a,b,从而得到双曲线的方程.
(2)设m方程为y=kx-1,则点M、N坐标(x1,y1),(x2,y2)是方程组
y=kx-1
x2
3
-y2=1
的解,消去y,得(1-3k2)x2+6kx-6=0.由根与系数关系和题设条件推导出k的值,从而求出直线m的方程.
解答:解:(1)依题意,l方程
x
a
+
y
-b
=1,即bx-ay-ab=0,由原点O到l的距离为
3
2
,得
ab
a2+b2
=
ab
c
=
3
2
,又e=
c
a
=
2
3
3

∴b=1,a=
3

故所求双曲线方程为
x2
3
-y2=1.
(2)显然直线m不与x轴垂直,设m方程为y=kx-1,
则点M、N坐标(x1,y1),(x2,y2)是方程组
y=kx-1
x2
3
-y2=1
的解,
消去y,得(1-3k2)x2+6kx-6=0.①
依题意,1-3k2≠0,由根与系数关系,
知x1+x2=
6k
3k2-1
,x1x2=
6
3k2-1

OM
ON
=(x1,y1)•(x2,y2)=x1x2+y1y2
=x1x2+(kx1-1)(kx2-1)
=(1+k2)x1x2-k(x1+x2)+1
=
6(1+k2)
3k2-1
-
6k2
3k2-1
+1=
6
3k2-1
+1.
又∵
OM
ON
=-23,
6
3k2-1
+1=-23,k=±
1
2

当k=±
1
2
时,方程①有两个不相等的实数根,
∴方程为y=
1
2
x-1或y=-
1
2
x-1.
点评:本题是双典线的综合题,重点考查双曲线的性质及其应用,具有一定的难度.解题时要注意根与系数的关系的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
7
=1
,直线l过其左焦点F1,交双曲线的左支于A、B两点,且|AB|=4,F2为双曲线的右焦点,△ABF2的周长为20,则此双曲线的离心率e=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1
的一个焦点与抛物线y2=4x的焦点重合,且该双曲线的离心率为
5
,则该双曲线的渐近线方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(b>a>0)
,O为坐标原点,离心率e=2,点M(
5
3
)
在双曲线上.
(1)求双曲线的方程;
(2)若直线l与双曲线交于P,Q两点,且
OP
OQ
=0
.问:
1
|OP|2
+
1
|OQ|2
是否为定值?若是请求出该定值,若不是请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知直线l:kx-y+1+2k=0(k∈R),则该直线过定点
(-2,1)
(-2,1)

(2)已知双曲线
x2
a2
-
y2
b2
=1的一条渐近线方程为y=
4
3
x,则双曲线的离心率为
5
3
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)满足
a1
b
2
 |=0
,且双曲线的右焦点与抛物线y2=4
3
x
的焦点重合,则该双曲线的方程为
 

查看答案和解析>>

同步练习册答案