精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 经过点 ,其离心率 .
(Ⅰ)求椭圆 的方程;
(Ⅱ)设动直线 与椭圆 相切,切点为 ,且 与直线 相交于点
试问:在 轴上是否存在一定点,使得以 为直径的圆恒过该定点?若存在,
求出该点的坐标;若不存在,请说明理由.

【答案】解:(Ⅰ)依题意,得 .又

中, ,所以

所以椭圆 的标准方程为

(Ⅱ)设 ,则

因为点 在椭圆 上,所以 .即

,所以直线 的方程为

,得

为线段 的中点,所以

所以

因为

所以


【解析】(1)根据题意可以知:将点代入椭圆的方程利用椭圆的离心率公式即可求得a和b的值,即可求得椭圆的方程。(2)将直线方程代入椭圆的方程由判别式等于零求得关于m的方程,利用韦达定理以及中点坐标公式求T的坐标联立即可求出S点的坐标,结合向量的数量积坐标运算可求得点A的坐标即可求得以ST为直径的圆恒过该定点(1,0)。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据,

1)求

2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程

3)已知该厂技动前100吨甲产品的生产能耗为90吨标准煤.试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?

已知 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为建设美丽乡村,政府欲将一块长12百米,宽5百米的矩形空地ABCD建成生态休闲园,园区内有一景观湖EFG(图中阴影部分),以AB所在直线为x轴,AB的垂直平分线为y轴,建立平面直角坐标系xOy(如图所示).景观湖的边界线符合函数y=x+ (x>0)模型,园区服务中心P在x轴正半轴上,PO= 百米.
(1)若在点O和景观湖边界曲线上一点M之间修建一条休闲长廊OM,求OM的最短长度;
(2)若在线段DE上设置一园区出口Q,试确定Q的位置,使通道PQ最短.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等差数列{an}的前n项和为Sn , 数列{bn}是等比数列,满足a1=3,b1=1,b2+S2=10,a5﹣2b2=a3
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)令Cn= 设数列{cn}的前n项和Tn , 求T2n

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某淘宝商城在2017年前7个月的销售额 (单位:万元)的数据如下表,已知具有较好的线性关系.

1关于的线性回归方程;

2分析该淘宝商城2017年前7个月的销售额的变化情况,并预测该商城8月份的销售额.

:回归直线的斜率和截距的最小二乘估计公式分别为:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】条件 ;条件 :直线 与圆 相切,则 的( )
A.充分必要条件
B.必要不充分条件
C.充分不必要条件
D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合M={x||x|<1},N={y|y=2x , x∈M},则集合R(M∩N)等于(
A.(﹣∞, ]
B.( ,1)
C.(﹣∞, ]∪[1,+∞)
D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)判断并证明函数的奇偶性;

(2)判断当时函数的单调性,并用定义证明;

(3)若定义域为,解不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 f(x)=2sin2ωx+2sinωxcosωx﹣1(ω>0)的周期为π.
(Ⅰ)求ω的值;
(Ⅱ)求函数f(x)在上的值域.

查看答案和解析>>

同步练习册答案