精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)若函数的图象上存在关于原点对称的点,求实数的取值范围;

(2)设,已知上存在两个极值点,且,求证:(其中为自然对数的底数).

【答案】(1);(2)证明见解析.

【解析】

(1)函数关于原点对称的函数解析式为.函数的图象上存在关于原点对称的点,等价于方程有解.

,令,利用导数研究函数的单调性极值即可得出.

等价于等价于

,再利用导数研究函数的单调性、极值,利用分析法即可得证.

(1)函数的图像上存在关于原点对称的点,

的图像与函数的图像有交点,

上有解.

上有解.

,(),则

时,为减函数;当时,为增函数,

所以,即.

(2)

上存在两个极值点,且

所以

因为,所以

,则

要证,即证

只需证,即证

上单调递增,

所以,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在正方体ABCDA1B1C1D1中,下列判断正确的是(

A.A1C⊥面AB1D1B.A1C⊥面AB1C1D

C.A1B⊥面AB1D1D.A1BAD1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的导函数.

(1)求函数的单调区间;

(2)若函数上存在最大值0,求函数在[0,+∞)上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果函数的定义域为,且存在实常数,使得对于定义域内任意,都有成立,则称此函数具有“性质.

1)判断函数是否具有“性质”,若具有“性质”,求出所有的值的集合,若不具有“性质”,请说明理由;

2)已知函数具有“性质”,且当时,,求函数在区间上的值域;

3)已知函数既具有“性质”,又具有“性质”,且当时,,若函数的图像与直线2017个公共点,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为抛物线的焦点,过点的直线交抛物线于两点,为坐标原点.

1)当抛物线过点时,求抛物线的方程;

2)证明:是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种零件的质量指标值以分数(满分100)衡量,并根据分数的高低划分三个等级,如下表:

为了监控某种零件的一条生产线的生产过程,检验员随机抽取了100件零件,进行质量指标值检查,将检查结果进行整理得到如下的频率分布直方图:

(1)若该生产线的质量指标值要求为:

第一条:生产线的质量指标值合格和优秀的零件至少要占全部零件的75%,

第二条:生产线的质量指标值平均分不低于95分;

如果同时满足以上两条就认定生产线的质量指标值合格,否则为不合格,请根据以上抽样调查数据,判断该生产线的质量指标值是否合格?

(2)在样本中,按质量指标值的等级用分层抽样的方法从质量指标值不合格和优秀的零件中抽取5件,再从这5件中随机抽取2件,求这两件的质量指标值恰好一个不合格一个优秀的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A{x|x22x30}B{x|x22mxm240xRmR}

(1)AB[0,3],求实数m的值;

(2)ARB,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面有三个游戏规则,袋子中分别装有球,从袋中无放回地取球,问其中不公平的游戏是(

游戏1

游戏2

游戏3

袋中装有一个红球和一个白球

袋中装有2个红球和2个白球

袋中装有3个红球和1个白球

1个球,

1个球,再取1个球

1个球,再取1个球

取出的球是红球甲胜

取出的两个球同色甲胜

取出的两个球同色甲胜

取出的球是白球乙胜

取出的两个球不同色乙胜

取出的两个球不同色乙胜

A.游戏1B.游戏2C.游戏3D.游戏2和游戏3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】华为公司在201789日推出的一款手机,已于919日正式上市.据统计发现该产品的广告费用x与销售额y的统计数据如下表:

广告费用x(百万元)

4

2

3

5

销售额y(百万元)

44

25

37

54

根据上表可得回归方程中的9.4,据此模型预测广告费用为6百万元时,销售额为(

A.61.5百万元B.62.5百万元C.63.5百万元D.65.0百万元

查看答案和解析>>

同步练习册答案