精英家教网 > 高中数学 > 题目详情
2.三角形的面积为S=$\frac{1}{2}$(a+b+c)•r,(a,b,c为三角形的边长,r为三角形的内切圆的半径)利用类比推理,可以得出四面体的体积为(  )
A.V=$\frac{1}{3}$abc(a,b,c,为底面边长)
B.V=$\frac{1}{3}$Sh(S为底面面积,h为四面体的高)
C.V=$\frac{1}{3}$(S1+S2+S3+S4)r(S1,S2,S3,S4分别为四面体四个面的面积,r为四面    体内切球的半径)
D.V=$\frac{1}{3}$(ab+bc+ac)h(a,b,c为底面边长,h为四面体的高)

分析 根据平面与空间之间的类比推理,由点类比点或直线,由直线 类比 直线或平面,由内切圆类比内切球,由平面图形面积类比立体图形的体积,结合求三角形的面积的方法类比求四面体的体积即可.

解答 解:设四面体的内切球的球心为O,则球心O到四个面的距离都是r,
根据三角形的面积的求解方法:分割法,将O与四顶点连起来,可得四面体的体积等于以O为顶点,分别以四个面为底面的4个三棱锥体积的和,
∴V=$\frac{1}{3}$(S1+S2+S3+S4)r,
故选C.

点评 类比推理是指依据两类数学对象的相似性,将已知的一类数学对象的性质类比迁移到另一类数学对象上去.一般步骤:①找出两类事物之间的相似性或者一致性.②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.过点M(2,-2p)作抛物线x2=2py(p>0)的两条切线,切点分别为A,B,若线段AB中点的纵坐标为6,则抛物线的方程为(  )
A.x2=2yB.x2=4yC.x2=2y或x2=4yD.x2=3y或x2=2y

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若曲线y=x2+ax+b在点(0,b)处的切线方程是3x-y+1=0,则(  )
A.a=-3,b=1B.a=3,b=1C.a=-3,b=-1D.a=3,b=-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数$f(x)=Asin(ωx+φ)(ω>0,0<φ<\frac{π}{2})$的部分图象如图所示.
(1)求函数的解析式;
(2)当$x∈[{-\frac{π}{2},\frac{π}{12}}]$时,求函数$y=f({x+\frac{π}{12}})-\sqrt{2}f({x+\frac{π}{3}})$的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若a为非零复数,则下列四个命题都成立:
①若ab2>1,则$a>\frac{1}{b^2}$;
②a2-b2=(a+b)(a-b);
③$a+\frac{1}{a}≠0$;
④若|a|=|b|,则a=±b.
则对于任意非零复数a,b,上述命题仍成立的序号是(  )
A.B.①②C.③④D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.某班级有50名学生,现要采取系统抽样的方法在这50名学生中抽出10名学生,将这50名学生随机编号1-50号,并分组,第一组1-5号,第二组6-10号,…,第十组45-50号,若在第三组中抽得号码为12的学生,则在第八组中抽得号码为37的学生.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.来自英、法、日、德的甲、乙、丙、丁四位客人,刚好碰在一起,他们除懂本国语言外,每天还会说其他三国语言的一种,有一种语言是三人都会说的,但没有一种语言人人都懂,现知道:
①甲是日本人,丁不会说日语,但他俩都能自由交谈;
②四人中没有一个人既能用日语交谈,又能用法语交谈;
③甲、乙、丙、丁交谈时,找不到共同语言沟通;
④乙不会说英语,当甲与丙交谈时,他都能做翻译.针对他们懂的语言
正确的推理是(  )
A.甲日德、乙法德、丙英法、丁英德B.甲日英、乙日德、丙德法、丁日英
C.甲日德、乙法德、丙英德、丁英德D.甲日法、乙英德、丙法德、丁法英

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.x>0,y>0,x+y-xy+1=0,求x+2y的取小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=tanωx(ω>0)的图象上的相邻两支曲线截直线y=1所得的线段长为$\frac{π}{3}$.则ω的值是3.

查看答案和解析>>

同步练习册答案