精英家教网 > 高中数学 > 题目详情
如图,动点P在边长为1的正方形ABCD上运动,点M为CD的中点,当点P沿A→B→C→M运动时,点P经过的路程设为x,△APM的面积为f(x),求f(x)的解析式.
考点:函数解析式的求解及常用方法
专题:函数的性质及应用
分析:本题是一个分段函数,分点P在AB,BC和CM上得到三个一次函数,然后由一次函数的图象与性质确定选项.
解答: 解:当点P在AB上时,f(x)=x (0≤x≤1);
当点P在BC上时,PB=x-1,PC=2-x,
y=S正方形ABCD-S△ADM-S△ABP-S△PCM
=1-
1
4
-
1
2
(x-1)-
1
2
×
1
2
(2-x)=-
1
4
x+
3
4

∴f(x)=-
1
4
x+
3
4
(1<x≤2)
当点P在CM上时,MP=2.5-x,
∴f(x)=
1
2
(2.5-x)=-
1
2
x+
5
4
.(2<x≤2.5);
综上f(x)=
x,(0≤x≤1)
-
1
4
x+
3
4
,(1<x≤2)
-
1
2
x+
5
4
,(2<x≤2.5)
点评:本题考查的是动点问题的函数图象,分别考虑点O在AB,BC和CM上,由三角形的面积公式得到三个一次函数然后利用分段函数的形式表示.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={1,2a},B={a,b},若A∩B={
1
2
}
,则A∪B=(  )
A、{-1,
1
2
}
B、{1,
1
2
}
C、{-1,
1
2
,1}
D、{1,
1
2
,b}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)+2f(
1
x
)=x(x≠0),求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:log (
2
-1)
2
+1)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

两直线3x+y-
3
2
m=0与6x+my+1=0平行,则它们之间的距离为(  )
A、4
B、
2
13
13
C、
5
26
13
D、
7
20
10

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的顶点在原点,焦点为F(0,1),准线与y轴的交点为E.
(Ⅰ)求抛物线C的方程;
(Ⅱ)点P是抛物线C上的一个动点,抛物线在点P处的切线为l,过点P与l垂直的直线交抛物线C于另一点Q,设PE,QE的斜率分别为k1,k2,是否存在点P使得3k1+2k2=0?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x3-8x2+20x-17=a(x-1)(x-2)(x-3)+b(x-1)(x-2)+c(x-1)+d,求a,b,c,d之值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率与双曲线x2-y2=2的离心率互为倒数,且以抛物线y2=4x的焦点F为右焦点.
(I)求椭圆C的标准方程;
(II)过右焦点F作斜率为-
2
2
的直线l交曲线C于M、N两点,且
OM
+
ON
+
OH
=0,又点H关于原点O的对称点为点G,试问M、G、N、H四点是否共圆?若共圆,求出圆心坐标和半径;若不共圆,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:2x2-y2=2,若过点P(1,2)直线l与C没有公共点,则l斜率的取值范围为(  )
A、(-∞,-
2
B、(-
2
2
C、(
2
3
2
D、(
3
2
,+∞)

查看答案和解析>>

同步练习册答案