精英家教网 > 高中数学 > 题目详情
13.已知数列{an}的通项公式为an=25-2n,在下列各数中,不是{an}的项的是(  )
A.1B.-1C.3D.2

分析 分别令选项中的数等于25-2n,解得n值不是正整数的即为答案.

解答 解:由题意令an=25-2n=1可得n=12为正整数,即1是{an}的项;
同理令an=25-2n=-1可得n=13为正整数,即-1是{an}的项;
令an=25-2n=3可得n=11为正整数,即3是{an}的项;
令an=25-2n=2可得n=$\frac{23}{2}$不是正整数,即2不是{an}的项.
故选:D

点评 本题考查等差数列的通项公式,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.命题“设a、b、c∈N*,若c能整除ab,则a、b中至少有一个是c的倍数”是假命题(填写“真”或“假”),理由是a=4,b=8,c=16,c能整除ab,a,b都不是c的倍数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=$\left\{\begin{array}{l}{{3}^{-x-1}-1(x≤-1)}\\{x+1(-1<x≤2)}\\{\sqrt{x-2}(x>2)}\end{array}\right.$,若f(a)>2,则a的取值范围是a>6或a<-2或1<a≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知集合P={x|a+1≤x≤2a+1},Q={x|x2-3x≤10}.
(1)若a=3,求(∁RP)∩Q;
(2)若P?Q,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知点M为抛物线y=$\frac{1}{2}$x2+$\frac{3}{2}$上任意一点,点N为圆C:(x-3)2+y2=2上任意一点,则|MN|的最小值为(  )
A.2B.$\sqrt{2}$C.1D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知集合A={1,3,x3},B={x+2,1},是否存在实数x,使得B⊆A?若存在,求出集合A,B;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.若Sn为数列{an}的前n项和且Sn=n2+3n,若{bn}为等比数列且b2=4,b5=32.
(1)求数列{an}和{bn}的通项公式;
(2)设cn=an•bn,Tn数列{cn}的前n项和,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)=lnx-$\frac{1}{2}$ln[2x2-2(a+1)x+a(a+1)],其中0<a<2
(1)求函数f(x)的定义域D(用区间表示)
(2)讨论函数f(x)在D上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.化简:$\frac{1}{\sqrt{11-2\sqrt{30}}}$+$\frac{3}{\sqrt{7-2\sqrt{10}}}$+$\frac{4}{\sqrt{8+4\sqrt{3}}}$.

查看答案和解析>>

同步练习册答案