【题目】如图,抛物线的焦点为,抛物线上两点,在抛物线的准线上的射影分别为.
(1)如图,若点在线段上,过作的平行线与抛物线准线交于,证明:是的中点;
(2)如图,若的面积是的面积的两倍,求中点的轨迹方程.
科目:高中数学 来源: 题型:
【题目】已知函数的定义域为,对于任意的,都有且当时,,若.
(1)求证:为奇函数;
(2)求证: 是上的减函数;
(3)求函数在区间[-2,4]上的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的普通方程为,曲线的参数方程为(为参数),以为极点,轴的正半轴为极轴建立极坐标系.
(Ⅰ)求直线的参数方程和极坐标方程;
(Ⅱ)设直线与曲线相交于两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为丰富市民的文化生活,市政府计划在一块半径为200m,圆心角为的扇形地上建造市民广场,规划设计如图:内接梯形区域为运动休闲区,其中A,B分别在半径,上,C,D在圆弧上,
;上,;区域为文化展区,长为,其余空地为绿化区域,且长不得超过200m.
(1)试确定A,B的位置,使的周长最大?
(2)当的周长最长时,设,试将运动休闲区的面积S表示为的函数,并求出S的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆C:的左、右焦点分别为、,上顶点为A,在x轴负半轴上有一点B,满足为线段的中点,且AB⊥。
(I)求椭圆C的离心率;
(II)若过A、B、三点的圆与直线:相切,求椭圆C的方程;
(III)在(I)的条件下,过右焦点作斜率为k的直线与椭圆C交于M,N两点,在x轴上是否存在点P(m,0)使得以PM,PN为邻边的平行四边形是菱形?如果存在,求出m的取值范围;如果不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(),.
(1)当在处的切线与直线垂直时,方程有两相异实数根,求的取值范围;
(2)若幂函数的图象关于轴对称,求使不等式在上恒成立的的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在长方体中,如果把它的12条棱延伸为直线,6个面延展为平面,那么在这12条直线与6个平面中:
(1)与直线不平行也不相交的直线有哪几条?
(2)与直线平行的平面有哪几个?
(3)与直线垂直的平面有哪几个?
(4)与平面平行的平面有哪几个?
(5)与平面垂直的平面有哪几个?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com