精英家教网 > 高中数学 > 题目详情

【题目】是一个给定的非零实数,在平面直角坐标系中,曲线的方程为,点.

(1)设上的任意一点,试求线段的中点的轨迹的方程并指出曲线的类型和位置;

(2)求出在它们的交点处的各自切线之间的夹角(锐角)(用反三角函数式表示)

【答案】(1)见解析;(2)

【解析】

(1)

(由,得

).

故曲线是在一条等轴双曲线上挖去点(0,0)和所得的曲线.

的中点为,则.

从而,.

代入方程

).

因此,的轨迹的方程为

).

它的中心点为,渐近线为,即是在一条等轴双曲线上挖去点所得的曲线.

(2)联立方程组

②÷①得.

解得,代入式②得.

的交点为.

的两边求关于的导数得,即

.

再对的两边求关于的导数得,即

.

在焦点处的各自的切线的夹角(锐角)的正切值为.

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知曲线上任意一点到直线的距离是它到点距离的2倍;曲线是以原点为顶点,为焦点的抛物线.

(1)求的方程;

(2)设过点的直线与曲线相交于两点,分别以为切点引曲线的两条切线,设相交于点,连接的直线交曲线两点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色、相邻区域颜色不同,则区域不同涂色的方法种数为(

A.360B.400C.420D.480

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为,过椭圆的焦点且与长轴垂直的弦长为1

1)求椭圆C的方程;

2)设点M为椭圆上第一象限内一动点,AB分别为椭圆的左顶点和下顶点,直线MBx轴交于点C,直线MAy轴交于点D,求证:四边形ABCD的面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的顶点在原点,过点A(-4,4)且焦点在x轴.

(1)求抛物线方程;

(2)直线l过定点B(-1,0)与该抛物线相交所得弦长为8,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】试问:能否把2008表示成的形式?如果可以,这种表示方式是否有无限多个?其中,m、n均为大于100且小于170的正整数,;均为两两不相等的小于6的正有理数,均为大于1且小于5的正整数,同时, 两两不相等,也两两不相等请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xg(x)=2x+a,若x1[1]x2[23],使得f(x1)g(x2),则实数a的取值范围是(  )

A.a≤1B.a≥1C.a≤2D.a≥2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】推进垃圾分类处理,是落实绿色发展理念的必然选择,也是打赢污染防治攻坚战的重要环节.为了解居民对垃圾分类的了解程度,某社区居委会随机抽取1000名社区居民参与问卷测试,并将问卷得分绘制频率分布表如表:

得分

男性

人数

40

90

120

130

110

60

30

女性

人数

20

50

80

110

100

40

20

1)从该社区随机抽取一名居民参与问卷测试,试估计其得分不低于60分的概率;

2)将居民对垃圾分类的了解程度分为“比较了解”(得分不低于60分)和“不太了解”(得分低于60分)两类,完成2×2列联表,并判断是否有95%的把握认为“居民对垃圾分类的了解程度”与“性别”有关?

不太了解

比较了解

合计

男性

女性

合计

3)从参与问卷测试且得分不低于80分的居民中,按照性别进行分层抽样,共抽取10人,现从这10人中随机抽取3人作为环保宣传队长,设3人中男性队长的人数为ξ,求ξ的分布列和期望.

附:,(n=a+b+c+d.

临界值表:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是一个各位数字都不是0且没有重复数字的三位数,将组成的3个数字按从小到大排成的三位数记为,按从大到小排成的三位数记为,(例如,则)阅读如图所示的程序框图,运行相应的程序,任意输入一个,输出的结果=( )

A. 693 B. 594 C. 495 D. 792

查看答案和解析>>

同步练习册答案