精英家教网 > 高中数学 > 题目详情

(08年上虞市质检一理) 如图,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=,M为BC的中点,

     (Ⅰ)  证明:AM⊥PM;          

    (Ⅱ)求二面角P―AM―D的大小;

    (III)求点D到平面AMP的距离.   

 

解析:解法1:(I)取CD的中点E,连结PE、EM、EA

         ∵△PCD为正三角形   ∴PE⊥CD,PE=PDsin∠PDE=2sin60°=

         ∵平面PCD⊥平面ABCD  ∴PE⊥平面ABCD 

         ∵四边形ABCD是矩形   ∴△ADE、△ECM、△ABM均为直角三角形

         由勾股定理可求得EM=,AM=,AE=3        ∴EM2+AM2=AE2

         ∴∠AME=90°      ∴AM⊥PM

   (Ⅱ)由(I)可知EM⊥AM,PM⊥AM   ∴∠PME是二面角P―AM―D的平面角

         ∴tan∠PME=   ∴∠PMA=45°  ∴二面角P―AM―D为45°

  

解法2:(I)以D点为原点,分别以直线DA、DC为x轴、y轴,建立如图所示的空间直角坐标系D―xyz

         依题意,可得D(0,0,0),P(0,1,),C(0,2,0),A(2,0,0),M(,2,0),

                                    

               

                                     即,∴AM⊥PM.

   (Ⅱ)设平面PAM,则

                  

        取y=1,得 显然平面ABCD

        .

        结合图形可知,二面角P―AM―D为45°;

 

 

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(08年上虞市质检一文)已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好是抛物

线的焦点,离心率等于 

(I)求椭圆C的标准方程;

(II)过椭圆C的右焦点作直线l交椭圆CAB两点,交y轴于M点,若为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年上虞市质检一文) (Ⅰ) 请写出一个各项均为实数且公比的等比数列, 使得其同时满足;             

   (Ⅱ) 在符合(1)条件的数列中, 能否找到一正偶数, 使得这三个数依次成等差数列? 若能, 求出这个的值; 若不能, 请说明理由.   

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年上虞市质检一理)已知椭圆C1 (0<a<,0<b<2)与椭圆C2有相同的焦点. 直线L:y=k(x+1)与两个椭圆的四个交点,自上而下顺次记为A、B、C、D.

(I)求线段BC的长(用k和a表示);

(II)是否存在这样的直线L,使线段AB、BC、CD的长按此顺序构成一个等差数列.请说明详细的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年上虞市质检一理)  有穷数列(n=1,2,3,…,n0, n0∈N*, n0≥2),满足(n=1,2,3,…,n0-1),求证:

(Ⅰ)数列的通项公式为:,(n=2,3,…,n0);

(Ⅱ) +…+.

查看答案和解析>>

同步练习册答案